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This is not a physics textbook. Rather, it is a physics
reader, a collection of some of the best articles and
book passages on physics. A few are on historic events
in science, others contain some particularly memorable
description of what physicists do; still others deal with
philosophy of science, or with the impact of scientific
thought on the imagination of the artist.

There are old and new classics, and also some little-
known publications; many have been suggested for in-
clusion because some teacher or physicist remembered
an article with particular fondness. The majority of
articles is not drawn from scientific papers of historic
importonce themselves, because material from many of
these is readily available, either as quotations in the
Project Physics text or in special collections.

This collection is meant for your browsing. If you follow /)
your own reading interests, chances are good that you
will find here many pages that convey the joy these
authors have in their work and the excitement of their
ideas. If you want to follow up on interesting excerpts,
the source list at the end of the reader will guide you
for further reading.
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A fictional scientist tells of an apparatus for pro- J
ducing silence. Although the proposed scheme is im-
probable, the story has a charming plausibility.

1 Silence, Please

" Arthur C. Clarke

1957

You coME upon the “White Hart” quite unexpectedly in
one of these anonymous little lanes leading down from
Fleet Street to the Embankment. It's no use telling you
where it is: very few people who have set out in a deter-
mined effort to get there have ever actually arrived. For
the first dozen visits a guide is essential: after that you'll
probably be all right if you close your eyes and rely on
instinct. Also—to be perfectly frank—we don’t want any
more customers, at least on our night. The place is already
uncomfortably crowded. All that I'll say about its loca- B
tion is that it shakes occasionally with the vibration of :
newspaper presses, and that if you crane out of the win-
dow of the gent’s room you can just see the Thames.

From the outside, is looks like any other pub—as in-
deed :* is for five da,s of the week. The public and saloon
bars are on the ground floor: there are the usual vistas of ,
brown o2k panelling and frosted glass, the bottles behind i
the bar, the handles of the beer engines . . . nothing out :
of the ordinary at all. Indeed, the only concessior to the :
twentieth century is the juke box in the public bar. It was
installed during the war in a laughable attempt to make
G.L’s feel at home, and one of the first things we did was
to make sure there was no danger of its ever working
again.

At this point I had better explain who “we” are. That
is not as easy as I thought it was going to be when I
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started, for a complete catalogue of the “White Hart’s” 3
clients would probably be impossible and would certainly
be excruciatingly tedious. So all I'll say at this point is 2
that “we” fall into three main classes. First there are the 7
journalists, writers and editnrs. The journalists, of course, B
gravitated here from Fleet Street. Those who couldn’t A
make the grade fled elsewhere: the tougher ones remained. I
As for the writers, most of them heard about,us from %
other writers, came kere for copy, and got trappéd. ﬁ
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Where there are writers, of course, there are sooner or
later editors. If Drew, our landlord, got a percentage on
the literary business done in his bar, he’d be a rich man.
(We suspect he is a rich man, anyway.) One of our wits
once remarked that it was a common sight to see half a
dozen indignant authors arguing with a hard-faced editor
in one corner of the “White Hart”, while in another, half
a dozen indignant editors argued with a hard-faced author.

So much for the literary side: you will have, I’d better
warn you, ample opportunities for close-ups later. Now
let us glance briefly at the scientists. How did they get in
here?

Well, Birkbeck College is only across the road, and
King’s is just a few hundred yards along the Strand. That’s
doubtless part of the explanation, and again personal rec-
ommendation had a lot to do with it. Also, many of our
scientists are writers, and not a few of our writers are
scientists. Confusing, but we like it that way.

The third portion of our little microcosm consists of
what may be loosely termed “interested laymen”. They
were attracted to the “White Hart” by the general brou-
haha, and enjoyed the conversation and company so much
that they now come along regularly every Wednesday—
which is the day when we all get together. Sometimes
they can’t stand the pace and fall by the wayside, but
there’s always a fresh supply.

With such potent ingredients, it is hardly surprising that
Wednesday at the “White Hart” is seldom dull. Not only
have some remarkable stories been told there, but remark-
able things have happened there. For example, there was
the time when Professor , passing through on his
way to Harwell, left behind a brief-case containing—well,
we’d better nct go into that, even though we did so at the
time. And most interesting it was, too. . . . Any Russian
agents will find me in the corner under the dartboard. I
come high, but easy terms can be arranged,

Now that I've finally thought of the idea, it seems
astonishing to me that none of my colleagues has ever
got round to writing up these stories. Is it a question of
being so close to the wood that they can'’t see the trees?




Or is it lack of incentive? No, the last explanation can
hardly hold: several of them are quite as hard up as I am,
and have complained with equal bitterness about Drew’s
“NO CREDIT” rule. My only fear, as I type these words
on my old Remington Noiseless, is that John Christopher
or George Whitley or John Beynon are already hard at
work using up the best material. Such as, for instance, the
story of the Fenton Silencer. . . .

1 don’t know when it began: one Wednesday is much
like another and it’s hard to tag dates on to them. Be-
sides, people may spend a couple of months lost in the
“White Flart” crowd before you first notice their exist-
ence. That had probably happened to Harry Purvis, be-
cause when I first came aware of him he already knew
the names of most of the people in our crowd. Which is
more than I do these days, now that I come to think of it.

But though I don’t know when, I know exactly how it
all started. Bert Huggins was the catalyst, or, to be more
accurate, his voice was. Bert’s voice would catalyse any-
thing. When he indulges in a confidential whisper, it
sounds like a sergeant major drilling an entire regiment.
And when he lets himself go, conversation languishes else-
where while we all wait for those cute little bones in the
inner ear to resume their accustomed places.

He had just lost his temper with John Christopher (we
all do this at some time or other) and the resulting deto-
nation had disturbed the chess game in progress at the
back of the saloon bar. As usual, the two players were
surrounded by backseat drivers, and we all looked up with
a start as Bert’s blast whammed overhead. When the
echoes died away, someone said: “I wish there was a way
of shutting him up.”
knlt was then that Harry Purvis replied: “There is, you

ow.”

Not recognising the voice, I looked round. I saw a
small, neatly-dressed man in the late thirties. JHe was
smoking one of those carved German pipes thgt always
makes me think of cuckoo clocks and the Black Forest.
That was the only unconventional thing about him: other-
wise he might have been a minor Treasury official ali

Silence, Please




dressed up to go to a meeting of the Public Accounts
Comnmittee,

“I beg your pardon?” I :aid.

He took no notice, but made some delicate adjust-
ments to his pipe. It was then that I noticed that it wasn’t,
as I'd thought at first glance, an elaborate piece of wood
carving. It was something much more” sophisticated—a
contraption of metal and plastic like a small chemical
engineering plant. There were even a couple of minute
valves. My God, it was a chemical engineering plant. . . .

I don’t gogele any more easily than the next man, but I
made no attempt to hide my curiosity. He gave me a su-
perior smile.

“All for the cause of science. If's an idea of the Bio-
physics Lab. They want to find out exactly what there is
in tobacco smoke—hence these filters. You know the old
argument-—does smoking cause cancer of the tongue, and
if so, how? The trouble is that it takes an awful lot of—
er—distillate to identify some of the obscurer bye-prod-
ucts. So we have to do a lot of smoking”

“Doesn’t it spoil the pleasure to have.all this plumbing
in the way?”

“I don’t know. You see, 'm just a volunteer. I don’t
smoke.”

“Oh,” I said. For the moment, that seemed the only
reply. Then I remembered how the conversation had
started. -

“You were saying,” I continued with some feeling, for
there was still a slight tintinus in my left ear, “that there
Wwas some way of shutting up Bert. We'd all like to hear
it—if that jsa’t mixing metaphors somewhat.”

“I was thinking,” he replied, after a couple of experi-
mental sucks and blows, “of the ill-fated Fenton Silen-
cer. A sad story—yet, I feel, one with an interesting Ies-
son for us all. And one day—who knows?—someone may
perfect it and earn the blessings of the world.”

Suck, bubble, bubble, plop. . . .

“Well, Jet’s hear the story. When did it happen?”

He sighed. ]

“Pm almost sorry I mentioned it. Still, since you insist




—and, of course, on the understandirg that it doesn’t go
beyond these walls.”

“Er—of course.”

“Well, Rupert Fenton was one of our lab assistants, A
very bright youngster, with a goo«l mechanical back-
ground, but, naturally, not very well up in theory. He was
always making gadgets in his spare tiine. Usually the idea
was good, but as he was shaky on fundamentals the things
hardly ever worked. That didn’t seem to discourage him:
1 think he fancied himself as a latter-day Edison, and
imagined he could make his fortune from the radio tubes
and other oddments lying around the lab. As his tinkering
didn't interfere with his work, no-one objected: indeed,
the physics demonstrators did their best to encourage him,
because, after all, there is something refreshing about any
form of enthusiasm. But no-one expected he’'d ever get

very far, because I don’t suppose he could even integrate

e to the x.”

“Is such ignorance possible?” gasped som=one.

“Maybe 1 exaggerate. Let’s say x e to the x. Anyway,
all his knowledge was entirely practical—rule of thumb,
you know. Give him a wiring diagram, however compli-
cated, and he could make the apparatus for you. But un-
less it was something really simple, like a television set, he
wouldn’t understand how it worked. The trouble was, he
didn’t realise his limitations. And that, as you'll see, was
most unfortunate.

“T think he must have got the idea while watching the
Honours Physics students doing some experiments in
acoustics. I take it, of course, that you all understand the
phenomenon of interference?”

“Naturaily,” I replied.

“Hey!” said one of the chess-players, who had given up
trying to concentrate on the game (probably because he
was losing.) “I don’t.”

Purvis looked at him as though seeing something that
had no right to be around in a world that had invented
penicillin,

“In that case,” he said coldly, “I suppose I had better
do some explaining.” He waved aside our indignant pro-
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tests. “No, I insist. It's precisely those who don’t under-
stand these things who need to be fold about them. If
someone had only explained the theory to poor Fenton
while there was still time. . . .”

He looked down at the now thoroughly abashed chess-
player. .

“I do not know,” he began, “if you have ever con-
sidered the nature of sound. Suffice to say that it consists
of a series of waves moving through the air. Not, how-
ever, waves like those on the surface of the sea—oh dear
no! Those waves are up and down movements. Sound
waves consist of alternate compressicns and rarefactions.”

“Rare-what?”

“Rarefactions.”

“Don’t you mean ‘rarefications’?”

“I do not. I doubt if such a word exists, and if it does,
it shouldn’,” retorted Purvis, with the aplomb of Siz Alan
Herbert dropping a particularly revolting neologism into
his killing-bottle. “Where was 1? Explaining sound, of
course. When we make any sort of noise, from the faintest
whisper to that concussion that went past just aow, a
series of pressure changes moves through the air. Have you
ever watched shunting engines at work on a siding? You
see a perfect example of the same kind of thing. There’s a
long line of goods-wagons, all coupled together. One end
gets a bang, the first two trucks move together—and then
you can see the compression wave moving right along the
line. Behind it the reverse thing happens—the rarefaction
—I.repeat, rarefaction—as the trucks separate again.

“Things are simple enough when there is only one
source of sound—only one set of waves. But suppose you
have two wave-patterns, moving in the same direction?
That's when interference arises, and there are lots of
pretty experiments in elementary physics to demonstrate
it. All we need worry about here is the fact—which I
think you will ail agree is perfectly obvious—that if one
could get two sets of waves exactly out of step, the total
result would be precisely zero. The compression pulse of
one sound wave would be on top of the rarefaction of
another—net result—no change and hence no sound. To




go back to my analogy of the line of wagons, it’s as if
you gave the last truck a jerk and a push simultaneously.
Nothing at all would happen.

“Doubtless some of you will already see what I am
driving at, and will appreciate the basic principle of the
Fenton Silencer. Young Fenton, I imagine, argued in this
manner. ‘This world of ours,” he said to himself, ‘is too
full of noise. There would be a fortune for anyone who
could invent a really perfect silencer. Now, what would
that imply . .. ?

“It didn’t take him long to work out the answer: I told
you he was a bright lad. There was really very little in
his pilot model. It consisted of a microphone, a special
amplifier, aad a pair of loudspeakers. Any sound that
happened to be about was picked up by the mike, ampli-
fied and inverted so that it was exactly out of phase with
the original noise. Then it was pumped out of the speak-
ers, the original wave and the new one cancelled out, and
the net result was silence.

“Of course, there was rather more to it than that. There
had to be an arrangement to make surc that the cancelling
wave was just the right intensity—otherwise you might be
worse off than when you started. But these are technical
details that I won’t bore you with. As many of you will
recognise, it's a simple application of negative feed-back.”

“Just a moment!” interrupted Eric Maine. Eric,
should mention, is an electronics expert and edits some
television paper or other. He’s also written a radio play
about space-flight, but that’s another story. “Just a mo-
ment! There’s something wrong here You couldn’t get
silence that way. It would be impossivle to arrange the
phase ...”

Purvis jammed the pipe back in his mouth. For a mo-
ment there was an ominous buuuling a 1d I thought of the
first act of “Macbeth”. Then he fixed Eric with a glare.

“Are you suggesting,” he said frigidly, “that this story
is untrue?”

“Ah—well, I won’t go as far as that, but , . .” Eric’s
voice trailed away as if he had been silenced himself. He
pulled an old envelope out of his pocket, together with an
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assortment of resistors and condensers that seemed to have
got entangled in his handkerchief, and began to do some

" figuring. That was the last we heard from hinf for some
time.

“As I was saying,” continued Purvis calmly, “that’s the
way Fenton’s Silencer worked. His first model wasn’t very
powerful, and it couldn’t deal with very high or very low
notes. The result was rather odd. When it was switched
on, and someone tried to talk, you’d sear the two ends of
the spectrum—a faint bat's squeak, and a kind of low
rumble. But he soon got over that by using a more linear
circuit (dammit, I can’t help using some technicalities! )
and in the later model he was able to produce complete
silence over quite a large area. Not merely an ordinary
room, but a full-sized hall. Yes. . . .

“Now Fenton was not one of these secretive inventors
who won’t tell anyone what they are trying to do, in case
their ideas are stolen. He was all too willing to talk. He
discussed his ideas with the staff and with the students,
whenever he could get anyone to listen. It so happened
that one of the first people to whom he demonstrated his
improved Silencer was a young Arts student called—I
think—Kendall, who was taking Physics as a subsidiary
subject. Kendall was much impressed by the Silencer, as
well he might be. But he was not thinking, as you may
have imagined, about its commercial possibilities, or the
boon it would bring to the outraged ears of suffering hu-
manity, Oh dear no! He had quite other ideas.

“Please permit me a slight digression. At College we
have a flourishing Musical Society, which in recent years
has grown in numbers to such an extent that it can now
tackle the less monumental symphonies. In the year of
which I speak, it was embarking on a very ambitious en-
terprise. It was going to produce a new opera, a work by
a talented young composer whose name it would not be
fair to mention, since it is now well-known to you all, Let
us call him Edward England. I've forgotten the title of the
work, but it was one of these stark dramas of tragic love
which, for some reason I've never been able to under-
stand, are supposed to be less ridiculous with a musical
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Silence, Please

accompaniment than without. No doubt a good deal de-
pends on the music.

“I can still remember reading the synopsis while wait-
ing for the curtain to go up, and to this day have never
been able to decide whether the libretto was meant seri-
ously or not. Let’s see—the period was the late Victorian
era, and the main characters were Sarah Stampe, the pas-
sionate postmistress, Walter Partridge, the saturnine game-
keeper, and the squire’s son, whos: name I forget. It’s the
old story of the eternal triaugle, complicated by the vil-
lager’s resentment of Thange——in this case, the new tele-
graph system, which the local crones predict will Do
Things to the cows’ milk and cause trouble at lambing
time.

“Ignoring the frills, it's the usual drama of operatic
jealousy. The squire’s son doesn’t want to marry into the
Post Office, and the gamekeeper, maddened * ; his rejec-
tion, plots revenge. The tragedy rises to its -sreadful cli-
max when poor Sarah, strangled with parcel tape, is found
hidden in a mail-bag in the Dead Letter Department. The :
villagers hang Partridge from the nearest telegraph pole, i
much to the annoyance of the linesmen. He was supposed ;
to sing an aria while he was being hung: that is one thing
I regret missing. The squire’s son takes to drink, or the
Colonies, or both: and that’s that.

“Pm sure you're wondering where all this is leading:
please bear with me for a moment longer. The fact is that
while this synthetic jealousy was being rehearsed, the real
thing was going on back-stage. Fenton’s friend Kendall
had been spurned by the young lady who was to play
Sarah Stampe. I don’t think he was a particularly vindic-
tive person, but he saw an opportunity for a unique re-

e Var e Bl BT Lt

A7 AN

venge. Let us be frank and admit that college life does

breed a certain irresponsibility—and in identical circum- .

stances, how many of us would have rejected the same 2

chance? i
“T see the dawning comprehension on your faces. But §

we, the audience, hac no suspicion when t13e overture
started on that memorable day. It was a most distinguished
gathering: everyone was there, from the Chancellor down-




wards. Deans and professors were two a penny: I never
did discover how so many people had been bullied into
coming. Now that I come to think of it, I can’t remember
what I was doing there myself.

“The overture died away amid cheers, and, I must ad-
mit, occasional cat-calls from the more boisterous mem-
bers of the audience. Perhaps I do them an injustice: they
may have been the more musical ones.

“Then the curtain went up. The scene was the village
square af*Doddering Sloughleigh, circa 1860. Enter the
heroine, reading the postcards in the morning’s mail. She
comes across a letter addressed to the young squire and
promptly bursts into song.

“Sarah’s opening aria wasn’t quite as bad as the over-
ture, but it was grim enough. Luckily, we were to hear
only the first few bars. . . .

“Precisely. We need not viorry about such detaily as
how Kendall had talked the ingenuous Fenton into jt—
if, indeed, the inventor realised the use to which his device
was being applied. All I need say is that it was a most
convincing demonstration. There was a sudden, deaden-
ing blanket of silence, and Sarah Stampe just faded out
like a TV programme when the sound is turned off. Every-
one was frozen in their seats, while the singer’s lips went
on moving silently. Then she too realised what had hap-
pened. Her mouth opened in what would have been a
piercing scream in any other circumstances, and she fied
into the wings amid a shower of postcards.

“Thereafter, the chaos was unbelievable. For a few min-
utes everyone must have thought they had lost the sense
of hearing, but soon they were able to tell from the be-
haviour of their companions that they were not alone in
their deprivation. Someoné in- the Physics Department
must have realised the truth fairly promptly, for soon
little slips of paper were circulating among the V.LP.’s in
the front row. The Vice-Chancellor was rash enough to
try and restore order by sign-language, waving frantically
to the audience from the stage. By this time I was too sick
with laughter to appreciate such fine details.

“There was nothing for it but to get out of the hall,




which we all did as quickly as we could. I think Kendall
had fled—he was so overcome by the effect of the gadget
that he didn’t stop to switch it off. He was afraid of stay-
ing around in case he was caught and lynched. As for
Fenton—alas, we shall never know his side of the story.
We can only reconstruct the subsequent events from the
evidence that was left.

“As I picture it, he must have waited until the hall was
empty, and then crept in to disconnect his apparatus. We
heard the explosion all over the college.”

“The explosion?” someone gasped.

“Of course. I shudder to think what a narrow escape
we all had. Another dozen decibels, a few more phons—
and it might have happened while the theatre was still
packed. Regard it, if you like, as an example of the in-
scrutable workings of providence that only the inventor
was caught in the explosion. Perhaps it was as well: at
least he perished in the moment of achievement, and be-
fore the Dean could get at him.”

“Stop moralising, man. What happened?”

“Well, I told you that Fenton was very weak on theory.
If he’d gone into the mathematics of the Silencer he’d
have found his mistake. The trouble is, you see, that one
can't destroy energy. Not even when you cancel out one
train of waves by another. All that happens then is that
the energy you’ve neutralized accumulates somewhere else.
I’s rather like sweeping up all the dirt in a room—at the
cost of an unsightly pile under the carpet. -

“When you look into the theory of the thing, you'll find
that Fenton’s gadget wasn’t a silencer so much as a col-
lector of sound. All the time it was switched on, it was
really absorbing sound energy. And at that concert, it was
certainly going aat out. You'll understand what I mean if
you've ever looked at one of Edward England’s scores. On
top of that, of course, there was all the noise the audi-
ence was making—or I should say was frying to make—
during the resultant panic. The total amount of energy
must have been terrific, and the poor Silencer had to keep
on sucking it up. Where did it go? Well, I don’t know the
circuit details—probably into the condensers of the power
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pack. By the time Fenton started to tinker with it again,
it was like a loaded bomb. The sound of his approaching
footsteps was the last straw, and the overloaded apparatus
could stand no more. It blew up.”

For a moment no-one said a word, perhaps as a token
of respect for the late Mr. Fenton. Then E:ic Maine, who
for the last ten minutes had been muttering in the corner
over his calculations, pushed his way through the ring of
listeners. He held a sheet of paper thrust aggressively in
front of him,

“Hey!” he said. “I was right all the time. The thing
couldn’t work. The phase and amplitude relations. . . .”

Purvis waved him away.

“That’s just what I've explained,” he said patiently.
“You should have been listening. Too tzd that Fenton
found out the hard way.” .

He glanced at his watch. For some reason, he now
seemed in a hurry to leave.

“My goodness! Time’s getting on. One of these days,
remind me to tell you about the extraordinary thing we
saw through the new proton microscope. That's an even
more remarkable story.”

He was half way through the door before anyone else
could challenge him. Then George Whitley recovered his
breath.

“Look here,” he said in a perplexed voice. “How is it
that we never heard about this business?”

Purvis paused on the threshold, his pipe now burbling
briskly as it got into its stride once more. He glanced back
over his shoulder.

“There was only one thing to do,” he replied. “We
didn’t want a scandal—de mortuis nil nisi bonum, you
know. Besides, in the circumstances, don’t you think it
was highly appropriate to—ah—hush the whole business
up? And a very good night to you all.” ‘
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The invention of the steam engine was a major factor
in the early stages of the Indusiricl Revolution.

The Steam Engine Comes of Age

R. J. Forbes and E. J. Dijksterhuis

1963

THE steam engine, coke, iron, and steel are the four principal
factors contributing to the acceleration of technology called the
Industrial Revolution, which some claim to have begun about
1750 but which did not really gain momentum until about 1830.
It started in Great Britain but the movement gradually spread to
the Continent and to North America during the nineteenth
century.

SCIENCE I®3VIRES THE ENGINEER

During the Age of Projec’ the engineer had little help from the
scientists, who were bwiding the mathematical-mechanical
picture of the Newtonian world and discussing the laws of nature.
However, during the eighteenth century, the Age of Reason,
when the principles of this new science had been formulated, the
scientists turned to the study of problems of detail many of which
were of direct help to the engineer. The latter was perhaps less
interested in the new ideals of ‘progress’ and ‘citizenship of the
world’ than in the new theory of heat, in applied mechanics and
the strength of materials, or in new mather atical tools for their
calculations. The older universities like O .ford and Cambridge
contributed little to thi: collaboration. The pace was set by the
younger ones such as the universities of Edinburgh and Glasgow,
which produced such men as Hume, Roebuck, Kerr, and Black,
who stimulated the new technology. The Royal Society, and also
new centres like the Lunar Society and the Manchester Philo-
sophical Society and the many similar societies on the Continent,
contributed much to this new technology by studying and dis-
cussing the latest scientific theories and the arts, Here noblemen,
bankers, and merchants met to hear the scientist, the inventor,
and the engineer and to help to realize many of the projects
which the latter put forward. They devoted much money to
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scientific investigations, to demonstrations and stimulated in-
ventions by offering prizes for practical solutions of burning
problems. They had the capital to promote the ‘progress’ which
made Dr Johnson cry out: * This age is running mad after innova-
tion. All business of the world is to be done in a new way, men
are to be hanged in a new way; Tyburn itself is not safe from the
fury of innovation!’ New institutions such as the Conservatoire
des Arts et Métiers and the Royal Institution of Great Britain
were founded to spread the new science and technology by
lectures and demonstrations and the number of laymen attending
these lectures was overwhelming.

ENGINEERS AND SKILLED LABOUR

The new professional engineers which the Ecole des Ponts et
Chaussées began to turn out were the descendants of the sappers
and military engineers. However, the new technology also need- 1
other types of engineers for which new schools such as the Ecole
Polytechnique and the Ecole des Mines were founded. In Great
Britain the State was less concerned with the education of the
new master craftsmen. They were trained in practice: such
famous workshops as that of Boulton and Watt in Soho, Birm-
ingham, or those of Dobson and Barlow, Asa Lees, and Richard
Roberts. Their success depended not only on good instruction
but also on appropriate instruments and skilled labour.

The scientists of the eighteenth century had turned out many
new instruments which were of great value to the engineer. They
were no longer made individually by the research scientist, but
by professional instrument makers in Cassel, Nuremberg, or
London, and such university towns as Leiden, Paris, and Edin-
burgh. Their instruments became more efficient and precise as
better materials became available such as good glass for lenses
and more accurate methods for working metals.

Skilled labour was more difficult to create. The older genera-
tion of Boulton and Watt had to work with craftsmen such as
smiths and carpenters, they had to re-educate them and create
a new type of craftsmen, “skilled labour’. The d&igl_{ of early




The Steam Engine Comes of Age

machinery often revcals that it was built by the older type of
craftsmen that belonged to the last days of the guild system. The
new industrialists tried out several systems of apprenticeship
in their machine shops during the eighteenth century until they
finally solved this educational problem during the next century
and created schools and courses for workmen for the new indus-
tries, qualified to design and to make well-specified engines and
machine parts. )

A factor that contributed greatly to this development was the
rise of the science of applied mechanics and the methods of
testing materials. The theories and laws which such men as
Palladio, Derand, Hooke, Bernoulli, Euler, Coulomb, and
Perronet formulated may have been imperfect but they showed
the way to estimate the strength of materials so important in
the construction of machinery. ’s Gravesande and Van Muss-
chenbroek were the first to design and demonstrate various
machines for measuring tensile, breaking, and bending strengths
of various materials early in the eighteenth century. Such instru-
ments were gradually improved by Gauthey, Rondelet, and
others. The elastic behaviour of beams, the strength of arches,
and many other problems depended on such tests. Some scien-
tists developed tests for certain types of materials, for instance
for timber (Buffon), stone (Gauthey), or metals (Réaumur).

r Surh knowledge was of prime importance to the development
of the steam engine and other machinery which came from the
machine shops.

MACHINE SHOPS

The engineers who led this Industrial Revolution had to create
both the tools and the new workmen. Watt, himself a trained
jnstrument maker, had to invent several new tools and machines
and to train Lis workmen in foundries and machine shops. Hence
his notebooks are full of new ideas and machines. He invented
the copying press. His ingenious contemporaries Maudsiey and
Bramah were equally productive. Joseph Bramah was respon-
sible for our modern water closet (1778) and the first successful
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patent lock (1784) which no one succeeded in opening with a
skeleton key before Hobbs (1851), who spent fifty-one hours of
labour on it,

The difficulty in finding suitable labour arose from the fact that
the new machines were no longer single pieces created by one
smith, but that series of such machines were built from standard
parts which demanded much greater precision in manufacturing
such parts. The steam engine parts had to be finished accurately
to prevent the steam escaping between metal surfaces which slid
over each other, especially as steam pressures were gradually
increased to make these machines more efficient. Hence the
importance of the new tools and finisking rocesses, such as the
lathe and drilling, cutting and finishing machinery.

In 1797 Henry Maudsley invented the screw-cutting lathe.
Lathes originally belonged to the carpenter’s shop. Even before
the eighteenth century they had been used to turn soft metals
such as tin and lead. These lathes were now moved by means
of treadles instead of a bow, though Leonardo da Vinci had
already designed lathes with interchangeable sets of gear wheels
to regulate the speed of the lathe. Maudsley applied similar ideas
and introduced the slide rest. Brunel, Roberts, Fox, Witworth,
and others perfected the modern lathe, which permitted moving
the object horizontally and vertically, adjustment by screws, and
automatic switching off when the operation was completed. The
older machine lathes were first moved by hand, then by a steam
engine, and finally by electric motors. Now the mass production
of screws, bolts, nuts, and other standard parts became possible
and machines were no longer separate pieces of work. They were
assembled from mass-produced parts.

The tools of the rnachine shop were greatly improved during
the nineteenth century, pulleys, axles, and handles being per-
fected. The new turret or capstan lathe had a round or hexagonal
block rotating about its axis and holding in a hole in each side
the cutting or planing tool needed. These tools could then at will
be brought into contact with the metal to be finished, thus per-
forming the work of six separate lathes in a much shorter time.
The turret block was made to turn automatically (1857) and
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The Steam Engine Comes of Age

finally Flartness invented the flat turret lathe, replacing the block
by a horizontal face plate which gave the lathe greater flexi-
bility and allowed work at higher speeds. Such lathes ranged
from the small types used by the watchmaker to those for pro-
cessing large guns. This development was completed by the
introduction of high-speed tool steels by Taylor and White about
the beginning of our century, making the machine lathe a uni-
versal tool for the mass production of machine parts.

FACTORIES AND INDUSTRIAL REVOLUTION

This brought about a great change in the manufacturing process
itself. No longer were most commodities now made in the private
shops of craftsmen, but in larger workshops in which a water
wheel or a steam engine moved an axle from which smaller
machinery derived its power by means of gear wheels or belts,
each machine only partly processing the metal ormaterial. Hence
the manufacturins process was split up into a series of opera-
t'ons, each of which was performed by a special piece of machin-
ery instead of being worked by hand by one craftsman who
mastered all the operations.

The modern factory arose only slowly. Even in 1800 the word
‘factory’ still denoted a shop, a warehouse, or a depot; the
eighteenth century always spoke of ‘mills’ in many of which
the prime mover still was a horse mill or tread mill. The textile
factory Jaw of 1844 was the first to speak of ‘factories’.

It is obvious that the new factories demanded a large outlay
of capital. The incessant local wars had impoverished central
Europe and Italy and industry did not flourish there, so many
German inventors ieft their country to seek their fortune in
western Europe. State control of the ‘manufactures’ in France
had not been a success. The French government had not created
a new class of skilled labour along with the new engineers, and
Napoleon’s *self-supporting French industry’ was doomed to
be a failure when overseas trade was re-established after his fall,
Neither the Low Countries nor Scandinavia had the necessary
capital and raw materials needed for the Industrial Revolution.
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Only in eighteenth-century England did such a fortunate com-
bination of factors exist, a flourishing overseas trade, a well-
developed banking system, raw materials in the form of coal and
iron ores, free tradc and an industry-minded middle class willing
to undertake the risks of introducing new machinery and recruit-
ing the new skilled labour from the ranks of the farmers and
immigrants from Ireland and Scotland.

Hence we find the first signs of the Industrial Revolution in
Great Britain rather than in France, which, however, soon fol-
lowed suit. Competition from Germany did not start until the
middle of the nineteenth century, and from the United States
not until the beginning of our century.

THE BEAM ENGINES

The prime mover of this new industry was the steam engine. The
primitive machine that pumped water was transformed into a
prime mover by the efforts of Newcomen and Watt. Thomas
Newcomen (1663-1729) and John Calley built a machine in
which steam of 100° C moved a piston in its cylinder by con-
densation (1705). This pistonwas connectedwith the end of a beam;
the other end of which was attached to the rod of the pump or
any other machine. Most of these engines were used to drain
mines. John Smeaton (1724-92) studiedi the Newcomen engine
and perfected it by measurement and calculation, changing its
boiler and valves and turning it into the most popular steam
engine up to 1800.

James Watt (1736-1819), trained as an instrument maker,
heard the lectures of John Robison and Joseph Black at Edin-
burgh, where the new theory of heat was expounded and methods
were discussed to measure the degree and the amount of heat, as
well as the phenomena of evaporation and condensation. He
perceived that a large amount of heat was wasted in the cylinder
of the Newcomen engine, heating it by injection of steam and
cooling it by injecting cold water to condense the steam. Hence
he designed an engine in which the condensation took place ina
separate condenser, which was connected with the cylinder by
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opening a valve at the correct moment, when the steam had
forced the piston up (1763).

Watt tried to have his engine built at John Roebuck’s Carron
Iron Works in Scotland but did not find the skilled workmen
there to make the parts. So he moved southwards and started
work at the works of Matthew Bouiton, who built Roebuck’s
share in Watt’s patents (1774). At the nearby Bradley foundry of
John Wilkinson, cylinders could be bored accurately and thus
Watt produced his firs. large-scale engine in 1781. The power
output of the Watt engine proved to be four times that of a
Newcomen engine. It was soon used extensively to pump water
in brine works, breweries, and distilleries. Boulton and Murdock
helped to advertise and apply Watt's engines.

THE DOUBLE-ACTING ROTATIVE ENGINE

However, Watt was not yet satisfied with these results. His
Patent of 1781 turned the steam engine into a universally
efficient prime mover. The rod on the other arm of the beam
was made to turn the up-and-down movement of the beam into a
rotative one, by means of the ‘sun and planet movement’ of a
set of gear wheels connecting the rod attached to the end of the
beam with the axle on which the driving wheels and belts were
fixed which moved themachinesderivingtheir energy fromthisaxle.

A further patent of 1782 made his earlier engine into a double-
acting ong, that is a steam engine in which steam was admitted
alternately on each side of the piston. This succeeded only when
Boulton and Watt had mastered the difficult task of casting and
finishing larger and more accurate cylinders. Watt also had to
improve the connexion of the beam and the piston rod by means
of his extended three-bar system (1784) which he called the ‘ paral-
lel movement®. He was also able to introduce a regulator which
cut off the steam supply to the cylinder at the right moment and
leaving the rest of the stroke to the expansion of the steam made
better use of its energy.

In 1788 he designed his centrifugal governor which regulated
the steam supply accerding to the load keeping constant the
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number of strokes of the piston per minute. Six years Jatzy he
added the s*eam gauge or indicator to his engine, a miniature
cylinder and piston, connected with the main'cylinder. The small
piston of this indicator was attached to a pen which could be
made to indicate on a piece of paper the movements of the little
piston and thus provide a control on the movements of the steam
engine proper. William Murdock (1754-1839), by inventing the
sliding valves and the means of preparing a paste to seal off the
seams between the cast iron surface of the machine parts, con-
tributed much to the success of these engines as proper packing
was not yet available.

By 1800 some 500 Boulton and Watt engines were in operation,
160 of which pumped water back on to water wheels moving
machinery. The others were mostly rotative engines moving
other machinery and twenty-four produced blast air for iron
furnaces, their average strength being 15~16 h.p.

THE MODERN HIGH-PRESSURE STEAM ENGINE

The period 1800-50 saw the evolution of the steam engine to
the front rank of prime movers. This was achieved by building
steam engines which could be moved by high-pressure steam of
high temperature containing much more energy per pound than
the steam of 100° C which moved the earlier Watt engines. This
was only possible by perfecting the manufacture of the parts of
the steam engine, by better designing, and by the more accurate
finishing and fit of such parts.

Jabez Carter Hornblower built the first ‘compound
engine’, in whick the steam released from the first cylinder was
left to expand further in a second one. These compound engines
did away with the Watt condenser, but could not yet compete
seriously until high pressure steam was applied. Richard Tre-
vithick and Oliver Evans were the pioneers of the high-pressure
engine, which meant more horse power per unit of weight of the
steam engine. This again meant lighter engines and the possi-
bility of using them for road and water traffic.

Nor were properly designed steam engines possible until the
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theory of heat had been further elaborated and the science of
thermodynamics formulated, the theory of gases studied, and
more evidence produced for the strength of metals and materials
at high temperatures. Another important problem was the con-
struction of boilers to produce the high-pressure steam. The
ancient beehive-shaped boilers of Watt’s generation could not
withstand such pressures. Trevithick created the Cornish boiler
(1812), a horizontal cylinder heated by an inner tube carrying the
combustion gases through the boiler into the flue and adding to
the fuel efficiency of the boilers. The Lancashire boiler, designed
by William Fairbairn (1844), had two *ubes and became a serious
competitor of the Cornish boiler. Bexter grates for burning the
coal fuel were designed such as the ‘travelling grate stoker’ of
John Bodmer (1841), and more fuel was economized by heating
the cold feed water of the boiler with flue gases in Green’s
economizer (1845). ‘Then multitubular boilers were built in the
course of the nineteenth century, most of which were vertical
boilers, the best known of which was the Babcock and Wilcox
tubular boiler (1876).

Further factors helping to improve the design of high-pressure
steam engines were the invention of the direct-action steam pump
by Henry Worthington (1841), the steam hoist (1830), and James
Nasmyth’s steam hammer (1839). In the meantime Cartwright
(1797) and Barton (1797) had perfected metallic packing which
ensure tight joints and prevented serious leakage.

Thus steam pressures rose from 3-5 atm in 1810 to about
5 or 6 atm in 1830, but these carly high-pressure engines were
still of the beam type. Then came the much more efficient
rotation engines in which the piston rod was connected with the
driving wheel by means of a crank. Though even the early
American Corliss engine (1849) still clung to the beam design,
John M’Naught (1845) and E. Cowper (1857) introduced modern
rotative forms, which came to stay. Three-cylinder engines of this
type were introduced by Brotherhood (1871) and Kirk (1874)
and became very popular prime movers for steamships (1881).

Not until 1850 was the average output of the steam engines
some 40 h.p., that is significantly more than the 15 h.p. windmill
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or water-wheel of the period. Again the steam engine was not
bound to sites where water or wind were constantly available,
it was a mobile prime mover which could be installed where
needed, for instance in iron works situated near coal fields and
iron ores. In 1700 Great Britain consumed some 3,000,000 tons
of coal, mostly to heat its inhabitants. This amount had doubled
by 1800 because of the introduction of the steam engine, and
by 1850 it has risen to 60,000,000 tons owing to the steam engine
and the use of coke in metallurgy, . .
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The principle of conservation of energy was proposed
simultaneously by many physicists, including von Mayer,
Joule, von Heimholtz, and Thomson. This populariza-
tion appeared soon after the discovery. The author is
perhaps better known as Lord Kelvin.

Energy

William Thomson and Peter G. Tait

1862
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ENERGY.
BY PROFESSORS WILLIAM THOMSON AND P. G. TAIT.

Tux non-scientific reader who may take up this
article in the expectation of finding an exhortation
to manly sports, ora life of continnal activity, with
corresponding censure of every form of sloth and
seasual indulgence, will probably be inclined to
throw it down when he finds that it is devoted to
a question of physical science. But let him not
judge too hastily. Rigorous and minnte scientific
investigation is repulsive to all but & few, and these
specially trained, minds; bnt the principle on
which we are about to offer a few remarks admits
of being made, at all events in its elements,
thoroughly popular. General theories, whether
of Politics, International Law, or, as in the present
case, of Natural Philosophy, are, indeed, by their
very generality, capable of being clearly appre-
hended through the wideat circle of intelligent
readers, if properly presented ; while special ques.
tions, such as Church-rates, and the Ballot, the
Rights of Neutral Bottoms, or the Temperature of
Space, require to be explained to each individual
in » manner, and with precautions, suited to his
individual blas or defect of apprehension,

Of late several attempts have been made, with
various success, to impart to the great mass of the
interested but unscientific public an idea of the
ONE GrEaT Law of Plysical Science, known as
the Conservation of Energy, and it is cn account of
the defects, or rather errors, with which most of
thess attempts abound, that we have aimed pri-
marily at preparing an article, which shall be at
all eventa accurate, as far as humaun knowledge at
present reaches.  As to its intelligibility we cannot
of course decide. But we take the precaution of
inserting, in the form of notes, portious of the
article which, though of very jsreat importance,
could only be made iutelligible to the general
reader by elaborate and tedions explanations.

Every one knows by experience what Force is.
Our ideas are generally founded on the seusation
of the effort required, say, to press or to move some
mass of matter. In general, Force is defined as
that which produces, or tends to produce, motion,
Now, if no motion be produced, the force which
may have been exerted is absolutely lost, Hencs
the inconvenience and error of the phrase, “ Con.
servation of Force,” which is very commonly ap-
plied to our present subject. Among the Lost of
crrors which are dne to confounding Force with
Energy, one of the most extraordinary was some
time ago enunciated in & popnlar magszine in some
such form as this, * The sum-total of the Forces in
the Universo is Zcro”—a statement meaningless if

it be applied to Forcein its literal sense, and untrue
if it refer to Energy. ‘This is one example of the
errors we have undertaken to combat ; another re-
fers more to the history than to results of the
principle. ‘We were certainly amazed to find in &
recent number of another popular magazine, aud
in an article specially intended for popular infor-
mation, that one great branch of our present sub.
ject, which we Lad been tomed to iat
with the great name of Davy, was in reality dis-
covered g0 lately as twenty years ago by a German
physician. Such catering for the instruction of
the public requires careful looking after ; and we
therefore propose to place on a proper lLiasis the
history of the discovery, and to enumerate and
illustrate come of the principal truths already ac.
gnired to the theory of the Conservation of Energy.
To do this in a popular form we shall commence
with an examination of some cases of every.day
occurrence, and gradually introduce the scientific
terms when wo feel that we have clearly made ont
the ideas for which they stand. Once introduced,
they will be used freely, not so much for brevity
as for definiteness.

When an eight-day clock has been wound up, it
is thercby enabled to go for a week in spite of
friction and the resistance which the air at every
instaut offers to the pendulum. It has got what
in scientific language we call a supply of Energy.
In this case the energy simply consists in the fact
of & mass of lead being suspended some four feet
or 80 above the bottom of the cluck-case. The
mere fact of its being in that position gives it a
power of ** doing work” which it would not pos.
sess if lying on the ground. This is called Poten-
tial Energy. 1t will evidently be just so much the
greater as the weight is greater, and as the height
through which it can fall iy greater, Its amount
is, therefore, proportional to the product of the
weight and the height it Las to fall, becauss such
& product is doubled, as the energy is, by doubling
either factor. Thus & weight of one pound with
an availsble descent of forty feet, has the same
amount of potential energy as ten pounds at four
feet, eight pounds at five feet, or forty pounds at
one fool. And we may easily gee that the work
required to Lift the weight to its present position
will be the same in al) these cases, if wo take for
example such an illustration as the lifting of coals
from & pit. Twice as much work is done {even in
the popular signification of the phrase, * doing
work") when two tons are raised as when one only
has been 20; and to raise » ton through forty
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fathoms requires twice as mnch work as to raise it
throngh twenty. Hence it appears that work ex-
pended by an animal or machine ia lifting a weight
remains stored as potential energy in the relation
between the earth and the lifted weight, and thus
that energy so spent is not lost. But suppose the
coals to be allowed to tumble down the pit again,
what becomes of the energy? This qnestion will
give us an idea of the nature of the snbject we are
dealing with.

We have already adverted to the serious errors
into which we are lisble to fall from an incorrect
use of the word force, but we may with advantage
recur to the subject here. What becomes of the
enormous force with which the earth continually
attracts & mountain, or that with which the sun
attracts the earth ? Force is continually exercised
in each of these cases, yet no progressive effect is
produced on the mountain; and the changes which
the velocity of the earth in its orbit undergoes,
are, in the course of & year, as much in the way of
loss as of gain. We do no work, however much
we may fatigue ourselves, if we try to lift & ton
from the gronnd. If we try to lift & hundred-
weight, we can raise it & few fect, and have then
done work, and the work is expressible as 50 many
pounds raised so mauny feet, and can therefore be
stated as so many fool-pounds, each foot-pound
being the work required to raise a ponnd weigh! a
foot high. The true statement which meets all
snch cases is, Energy is never lost, Bnot we must
now return to our first illustration, to see how
energy may be modified or transformed, and then
we shall begin to understand how it is that no
modification or transformation ever causes loss of
energy.

There are two ways of raising & weight to a
height : by & continnous application of force, as
by a windlass, or by an almost instantaneous im-
pulse, such as & blow from a cricket-bat, or the
action of gunpowder. A 64 Ib. shot, fired verti-
cally from a gun loaded with an ordinary service
charge of powder, would, if unresisted by the air,
rise to about 35,000 feet, and if seized and secured
st the highest point of its course, would possess
there, in virtue of its position, a potential energy
of 2,240,000 foot-pounds. When it left the gun
it had none of this, but it was moving at the rate of
Afteen hundred feet per second. It had xiverIc or
(as it has sometimes been called) actual energy.
We prefer the first term, which indicates motion
as the form in which the energy is displayed.
Kinetic energy depends on motion ; and observa-
tion shows that its amount in each case is calcul-
able from the mass which moves and the velocity
with which it moves. And this being understood,
it is eamy, by considering a very simple case, to
find how it so depends, For, if & atone be thrown

up with & velocity of 32 feet per second, it will
rise to a height of nearly 16 feet; if thrown with
double velocity, or 64 feet per second, it will rise
Jour times as high, or to about 63} feet; if the
velocity be trebled, it rises nine times as high, or
t0 143 feet, and #0 on. Hence, as we must mea-
sure the energy of a moving body by the height to
which it will rise if its motion is directed vertically
upwards, we find that we have to measure it by
the square of the velocity. The recent tremend-
ous performances of the 12-ton Armstrong gun
form an admirable illustration of the same point,
showing, as they do, that to penetrate a thick
plate of iron mere weight of shot is compara-
tively unavailing—it must have great velocity ;
and in fact, with double the velocity we get at
once four times the penetrating or destructive
power. By such facts as these, we are led to mea-
sure kinetic energy by the square of the velocity
with whick & body moves. And there is particu-
lar advantage in taking as the exact expression,
one-half of the product of the moving mass and the
square of its velocity in feet per second, because
this makes the unit of measurement agres .with
that adopted for potential energy. We may then
express the relation between the forms of energy,
in the case of a projectile unresisted by the air, by
eaying, the sum of the potential and kinetic energics
does not vary during its flight.  As it rises it gains
potential energy, bnt its motion is slower, and
thus kinetic energy is lost;—as it descends it
continually loses potential energy, but gains velo-
city, and, therefore, kinetic energy. But what
happens when it reaches the ground and comes to
rest? Here it would appear to lose both its poten-
tial and kinetio energies. The first, indeed, is all
gone just as the mass reaches the ground. To &
superficial observer, the second might seem to be
expended in bruising and displacing the hodies on
which it impinges. But there is someth.ng more
profound than this, as we shall presently see.

Meanwhile, as popular examples of the two
kinds of energy, we may give such illustrations as
a coiled spring, say the hair-spring of s watch when
the balance-wheel is at one end of its range, a
drawn bow, a head of water, compressed air,—
all forms of potential energy ; and the correspond-
ing kinetic form in each case—the motion of the
balancz-wheel of the watch, the motion of an
arrow, a jet of water, an air-gun bullet, and s0 on.
But we need not dwell longer on this, as such
matters abound in every-day experience.

To recur to the more mysterious transformations
of energy, let us consider, as an excellent example,
the case of motion of water in & basin. By atir-
ring the water, originally at rest, we can easily
give it a considerable velocity of rotation, in
virtue of which it will, of course, posscas con.
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siderable kinctic cnergy. Morcover, the level
is disturbed ; the water rises from the middle
to the sides of the basin, and, in virtue of this,
the centre of gravity of the whole is higher than
when the water was at rest. It thus posscsses
potential encrgy also. If the stirring be discon-
tinucd, all visible motion ceascs after a few minutes,
and, the surface becoming level, the potential
energy is lost. It scems as if the kinetic encrgy
also is all lost in the ccasing of the visible motion.
What remains in their place? Apparently the
water has returned precisely to the state in which
it was before the stirring commenced, and the
work donc in stirring has been thrown away.
But this is not the casc : the water is warmer than
before the stirring, and warmer than during the time
when it was moving. Theenergy which apparently
disappeared really cxists as Heat. We might mul.
tiply cxamples of this kind indefinitely, and in all
we should be led to the incvitable question, W7at
Becomes of energy apparently lost? The answer is,
It ultimately becomes heat. We say ultimalely, be-
causc, as will afterwards be shown, energy appa-
rently lost may take in succession various forms,
all of which, however, finally become heat. Sen-
sible heat is, in fact, motion, and is thcrefore a
form of kinetic emcrgy. This was surmised at
least two ccnturics ago, for we find it stated with
remarkable clearness in the writings of Locke and
others. But it remained a conjecture, unsupported
by scientific evidence, until the proof was furnished
by Davy. The eimple experiment of melting two
pieces of ice by rubling them together showed at
once the impossibility of heat being & substance.
But it is not to be imagined that for all this the
pleasant fiction called Caloric was to be abandoned ;
and consequently, for upwards of forty years after
Davy's proof of its non-existence, caloric was be.
lieved in, written about, and taught, all over the
world.®

About the timo of Davy's experiments, Rumford
also was engaged on the subject, and by measuring
the heat developed in boring o cannon, arrived &*
& very approximate answer to the question, * How
much heat can be produced by the expenditure of
80 much work ?” or, in other words, and with the
modern phraseology, ¢ IFhat is the Dynamical
Kquivalent of Heat?”

The founder of the modern dynamical theory of
heat, an extension immensely beyond anything pre-
viously surmised, is undoubtedly Joule, As early
23 1840 we find him investigating the heat gene.
rated by electric currents, and in 184] he published

* No one who knows the }mment state of science can
§nore the fact that many of its most cerlain truths are

ill misunderstood, and their very opposites often
tauglhit, even by men who from their &n tion or their
notoriety are supposed by the public 1o be among the
best informed.

rescarches which contain the germ of the vast de-
velopnients of dynamical scicnce as applied to che-
mical acticn. In 1843 he published the results of
a‘well planned and exceuted serics of cxperiments,
by which he ascertaineid that a pound of water is
raised one degrec Faliresheit in temperature by
772 foot-pounds of mechanical work done upon it.
In other words, if a pound of water fall from a
height of 772 fcet, and the kinctic encrgy thus ac-
quired in the form of ordinary motion be cntively
transfornied into the kinctic energy of heat, the
water will be one degree hotter than before its fall.
Of course it is not in this way that the experimcnts
of Joule were made, but it gives perhaps as clear
an idea of lis result as any other. The actual
method which he first employed was to force water
through sniall tubes. In later researches he arrived
at the same numerical result (within g5 of differ-
encc), by stirring water by means of a paddle-
wheel, driven by the dcscent of a weight. The
number of foot-pounds of ylotential encrgy lost by
the descending weight of course gave the value of
the kinetic cnergy imparted to the water, and when
the latter came to apparent reat, the hieat produced
was thercfora the equivalent of either. These cx-
periments, of course, required extreme precautions
to prevent or to allow for loss of heat, etc.; but
they agreed so well with esch other in very
varied experiments, that the definite transforma-
tion of work into heat was completely established,
and the “‘dynamical equivalent of heat” determined
with great accuracy, Various other methods of
effecting the transformation of work into heat were
also tried by Joule, and with & like result; such as
using oil, or mercury, instead of water, in the
paddle-wheel experiment; or, again, expending
work in producing heat by friction of pieces of iron ;
or by turning a magneto-electric machine, and
measuring the heat generated by the electric cur-
rent 2o produced, eto.®

We can now see that when mechanical energy
is commonly said to be lost, as by unavoidable
friction in machinery, it is really only changed into
a new form of emergy—heat. Thus the savage
who lights his fire by rubbing together picces of
dry wood, expends his muscular energy in pro-

¢ At the sams time Joule published the fall proof of

the existence of relctions of equivaleuce nmonf the
energies of chemical affinity, heat of combination or
combustion, electrical currents from & galvanic bsttery
or from a magneto-electrio machine, engines worked b
gslvanism, and of all the varied and interchangeabls
manifestations of thermal action and meclianica] euergy
which accompsny them. These researches, and others
(which soun followed) on ths theory of animal heat and
motion in relation to the heat of combustion of ths food
consumed, and the theory of the phenomena presen
3! -ho?ﬁxl:g stars rma;l this :& :d':.]imtb bl‘::l tru:

ynamical principles, havs affo 0 sul uen
writers the cilof gprouﬁdwwk for their speculations on
tho dynaulcal theory of heat.
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ducing heat. By mere hammering, a skilfnl smith
can heat a piece of iron to redness. In the old
musket, the potential energy of the spring of the
lock becalne, when the trigger was drawn, kinetic
energy of the dog-head, and the latter was partly
expended in generating the heat which ignited the
steel sparks which inflamed the powder. Some of
it may have been wasted in splitting the flint, and
some in scratching the lid of the pan, some (as we
shall see presently) cestainly was wasted in prodnc.
ing the sound called the click of the lock.

Curiously enough, although similar coincidences
are commen, while Joule was pursuing and pnblish-
ing his investigations, there appearedin Germanya
paper by Mayer of Heilbronn. Its titleis Bemerkun.
gen @ber die Kréjfteder Unbelebten Natur, and its date
1842. In this paper the résults obtained by pre-
ceding natnralists are stated with precision—among
them the fundamental one of Davy—new experi.
ments are suggested, and a method for finding the
dynamical equivalent of heat is propounded.® On
the strength of this publication an attempt has
been made to claim for Mayer the credit of being
the first to establish in its generality the principle
of the Conservation of Energy. It is true that
t La science n'a pas de palrie,” and it is highly
creditable to British philosophers, that they have
so liberally acted according to this maxim., But
it is not to be imagined that on this account there
should be no scientific patriotism, or that in cnr
desire to do all justice to a foreigner, we should
depreciate or suppress theclaims of our owncountry.
men. And it especially startles us that the recent
attempts to place Mayer in a position which he
never claimed, and which had long before besn
taken by another, should have fonnd support
within the very walls wherein Davy propounded
his transcendent discoveries.

Having thur considered the transformation
of ‘mechanical energy into heat, we must next
deal with the converse process, or the pro-
dnction of mechanical energy from heat; & pro.

* Mayer's method is founded on the mp]poaiﬁon that
diminution of the volume of a body implies an evolu-
tion or generation of heat; and it involves essentiallya
false analogy between the natural fall of a body to the
earth, and tho condensation produced in an elastic fluid
b{ the application of external force. The hypothesis on
whichhe thus gronnds adefinite numerical estimate of the
relation between the agencies here involved, is that the
heat evolved when an elastic finid is com and kept
cool, is simplythe dynamical equivalent of the work em-

loyed in compressing it. The experimentsl investiga-

ons of subseqnent naturalists have shown that this by.
pothesis is altogether false, for the generslity of ﬁnin{z,
especially liquids, and is at best only g; imately true
for air ; whereas Mayer's statements imply its indiserimi.
nate application to all bodies in nature, w{ether gaseous,
liquid, or solid, and show no reason for choosing air for
the agﬂiution of the supposed Krinciplo to calculation,
but that at the time he wrote air was the only body for
which the requisite numerical dats wers known with
any approximation to accuracy.

cess to which the ateam-engine owes its vast
powers. But here we have no such general theo-
rem as in the former case. Mechanical energy
can always be changed into heat, but to obtain
mechanical energy from heat it is necessary that
we should have bodies of different temperatures ;
80 that if all the matter in the nniverse were at
one temperature it would be impossible, however
great were that temperature, to convert any heat
into wock. This is a most important fact, becanse,
as we shall presently see, it leads to the conclusion
not *hat the energy in the universe can ever vary in
amount, bnt that itis gradually becoming nniformly
diffused heat, from which it can never afterwards
be changed. However, granting that bodies of
different temperatures ave still procurable, heat in
passing from the warmer to the colder body may
(in part at least) be transformed into some other
form of energy; and in the case of the steam-
engine, that form is the mechanical effect prodnced
by the expansion of water into vapour by heat; so
that if the whole of the heat expended could be
obtained as *‘ work,” we should have 772 foot-
ponnds for every portion of applied heat which
was capable of raising the temperature of a pound
of water throngh one degree of Fahrenheit's scale.
In the best steam-engines, even with every modern
improvement, only abont one-tenth is actually so
recovered. All such cases come under the follow-
ing general proposition :— When an engine does work
in virtue of heat supplied to it, it emits heat from
some part necessarily cooler than that where the heat
is taken in ; but the quantity so emitled is less than the
quantily taken in, by an amount equivalent to the
work done. This is universally true, not only for
artificial contrivances, such as the steam-engine,
Stirling’s air-engine, thermo-electric engines, etc.,
but for every action of dead matter in which the
bodiés concerned, if altered by change of tempera.
ture, of volume, of form, or of electric, magnetic,
or chemical condition, are finally restored to their
primitive state.

But whence do we get the heat which gives
motion to the steam-engine, or, in other words,
what was its potential form before it became heat ?
Here we answer at once, just as a stone falling to
the earth changes its potential energy for kinetic,
and finally for heat; so coal and the oxygen of the
air, by virtue of their chemical affinity, have po-
tential energy when nncombined, which is changed
into its equivalent in heat as’ the combination
takes place, Chemical affinity, then, is a form of
potential, heat of combination or combnstion the
equivalent form of kinetic, energy. The heat thus
obtained may be by various means, as the steam-
engine or the air-engine, converted into mechanical
energy., Or the combination may take place, as
Joule has shown in one of his finest discoveries,
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without generating its full equivalent of heat, and
may be directed to spend a large part of its energy
in producing electric currents, and through them
raising weights, This is the case when znc cor-
hines with oxygen in a galvanic battery. The heat
of combination may then appear in the warming
of wires throngh which the current passes. Or it
may not appear at all, except in very small propor-
tions, and an equivalent of mechanical work done
may be had instead ; as Joule and Scoresby found
when, hy their skilled appliance of mechanical and
magnetic means, they prevented the chemical
action from generating more than one-fourth of its
heat, and got the remainder of its energy in the
form of weights raised.

A remarkable result of electric development of
the energy of chemical combination is, that through
it the heat-equivalent may be made to appear at
any time however long after, or in any place how-
ever distant from, the combustion. Thus if the
weights raised by an electro-magaetic engine driven
hy a galvanic battery are allowed to fall, sconer or
later they will generate in striking the ground
the complement of heat till then wanting from the
heat of combination of the ¢ chemicals” which
had been used. Or if a well insulated electric
conductor were laid where the old Atlantic cable
lies uselesas (for no other reason than that its insu-
lation was never free from faults), the zinc fire
might hurn coolly at Valencia, and develop nine-
tenths of its heat, or an equivalent of energy in
mechanical work, iu Newfoundland, wasting the
remainder almost solely in the generation of heat
hy electricity escaping through the 2000 miles of
gutta-perchs cover. In every eicctric telegraph a
portion (it may be and generally is only a small
portion) of the energy of combination of oxygen,
with the zinc if a battery is used, or with the
operator’s food if the magueto-inductive system is
followed, actually appears first at the remote end
of the wire as visible motions, Ultimately, through
resistances to these motions, or subsidence of the
sounds produced hy the impacts of the needles,
after they have told their tale, it becomes heat and
is dissipated through space.

Many observations render it probable that an
animal doing mechanical work does not allow the
chemical combinations which go on between its
food, more or less assimilated, and the oxygen in-
haled in its breath, or otherwise introduced into
its aystem directly or indirectly from our atmos-
phere, to generate their full equivalent of heat in
its body as when resting, hut directs a portion of
their energy to be spent immediately in the muscu-
lar effort of preasing against ezternal force. If
this were the case, it would follow that dynami-
cally the animal-engine is more like the electro-
maguetic machine driven by the electric current

from a galvanic battery, than a steam-engine or
air-engine, which takes inall its energy inthe form
of beat from a fire. It seems even probable that
it is actually through electric force that the energy
of the food is placed at the disposal of that most
inscrutahle of finite, created, and subject a ;ancies,
s free will directig the motions of matter in a
living animal. But whatever may be the true ex-
planation of the means, it is, as regards the result,
singularly noteworthy that the construction of the
animal frame enables it to convert-more of a given-
amount of potential energy into work than is pro.
curable from the most perfect steam-engine,

The food of animals is, as wo have just seen, by
virtue of its chemical composition, and affinity (s
true ““attraction”) for oxygen, a store of potential
energy. Gunpowder or gun-cotton, by the arrange-
ment of its constituents, is possessed of tremendous
potential energy, which a single spark resolves
into a kinetic form as heat, sound, and the kinetic
energy of a canuon shét. For sound is a motion of
air, air is matter, and thus sound is merely a form
of kinetic energy. In a bayonet charge, then, the
soldier’s rations are the potential energy of war;
in & cavalry charge, we have in addition that of
the forage supplied to the horses ; and when artil-
lery or small arms are used, the potential energy
of a mixture of nitre, sulphur, and charcoal is the
tranquil antecedent of the terrible kinetic effects
of noise and destruction. .

But we now come to the grandest question of
all, or at all events to a preliminary stage of it.
Whence do we immediately derive all those stores
of potential energy which we employ as fuel or
as food? What produces the potential energy of
a loaf or a beef-steak ? What supplies the coal or
the water-power, without which our factories must
stop? The answer, going one stage back, is quite
satisfactory. To the Sun we are indebted for
water-power, coal, and animal and vegetable food.
The sun's heat raises the water of seas and lakes
as vapour in the air, to be precipitated as rain
above its original level, and thus to form the store
of potential energy known as a ““head” of water.
Kinetic energy, radiated from the sun, enahles
plants to separate carhon from oxygen, and so to
become stores of potential energy which, as coal
or vegetable food, may have been treasured for
ages in the earth, or may be consumed annually
as they are produced. And while the sheep and
ox convert part of the potential energy of their
grass or turnips into animal heat and energy, the
rest, stored up as the potentisl energy of beef and
mutton, becomes in its turn a source of human
energy.

Now, to go yot astep back, Whence does the
sun procure the energy which he thus so continu.
ally and so liberally distributes? To this question
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several answers have been given, one of which may
be disposed of at once, and another will be found
merely to shift, not to resolve the difficulty. The
first of these supposes the sun to be the site of
a great combustion or production of kinetic
from potential energy by chemical combination.
But it has been shown that, even supposing the
mass of the sun to be made up (in the most effec.
tive proportions) of the combination of known
bodies which would give the greatest potential
energy, the whole could scarcely be adequate to
produce 5000 years’ radiation at the present rate;
whereas there is abundant geological proof that the
present state of things, if not a higher rate of dis.
tribution of energy from the sun, must have lasted
already many hundreds of thousands of years. The
sccond supposes the sun to be & white-hot liquid
mass, but does not account for its heat. A third
allows that the sun, all round his surface, if not
throughout hismass, is most probably composed of
melted matter, of a temperature not very many
times greater than can actually be produced in our
laboratories, but accounts for the original produc.
tion, and the present maintenance of that atate in
spite of lossesthrough radiation, by whatiscalledthe
meteoric theory. A fourth, which is probably the
true explanation, agrees with the third as to the
origin of the sun's heat, but supposes the loss by
radiation at present not tobe compensated by fresh
influx of meteoric matter. According to this
theory, matter, when created, was diffused irregu-
larly through infinite space, but was endowed with
the attractive force of gravitation, by virtue of
which it gradually became agglomerated into masses
of various sizes, and retaining various amounts of
kinetic caergy in the shape of actual motion, which
still appear in the orbital and axial revolutions,
not only of the bodies composing the solar system,
but of those in stellar systems also. The tempers.
ture produced by collisions, etc., would not only
be in general higher for the larger bodies, but they
would, of course, take longer to cool ; and hence,
our e: rth, though probably in bygone ages a little
sun, r- "ains but a slight amount of its original heat,
at less! in its superficial strats, while the sun still
shines sith brilliance perhaps little impaired. Sup.
plies of energy are, no doubt, yet received continu.
ally by the aun, on its casual mesting with masses
traversing space, or the falling in of others revolv-
ing about it, just as, on an exceedingly small scale,
the earth occasionally gets a slight increaze of kin-
etic energy by the impsct of a shooting star or
serolite, In this sense it is easily calculable that
the direct fall of the earth to the sun would supply
the latter with energy equivalent to ninetyfive
years’ loss at the present rate. But it is not pro-
bable that the sun receives in this way more than
a very amall proportion of the heat which he emits

by radiation. He must therefore at present be in
the condition of a heated body cooling. But being
certainly liquid for a great depth all round his sur.
face, if not throughout, the superficial parts must
sink by becoming heavier as they contracy through
cooling. The currents thus produced, bringing
fresh portions from below to the surface, and keep-
ing all the liquid thoroughly stirred up, must dis.
tribute the loss of heat very equably throughout
the whole liquid mass, and so prevent the surface
from cooling quickly, a8 it certainly would do if
the superficial stratum were solid. So vast is the
capacity of such a mass for heat, when under the
influence of the enormous pressure produced in the
interior by mutual gravitation of the parts, that if
the sun is liquid to his centre, he may emit, as it
has been estimated, from seven to seven thousand
years' heat at the present rate before his average
temperature can go down by one degree Fahren.
heit.

This view of the possible origin of energy at
creation is excessively instructive. Created simply
as difference of position of atiracting maasses, the
potential energy of gravitation was the origival
form of all the energy in the universe ; and as we
have seen that all energy tends ultimately to be.
come heat, which cannot be transformed without
a new creative act into any other modification, we
must conclude that when all the chemical and
gravitation energies of the universe have taken
their final kinetic form, the result will be an ar-
rangement of matter possessing no realizable poten.
tial energy, but uniformly hot—an undistinguish.
able mixture of all that ia now definite and
separate—chaos and darkness as ““in the begin-
ning.” But before this consummation can be
sttained, in the matter of our solar aystem, there
must be tremendous throes and convulsions, de-
stroying every now existing form, As aurely as
the weights of a clock run down to their lowest
position, from which they can never rise again, un-
less fresh energy is communicated to them from
some source rot yet exhausted, so surely must
planet after planet creep in, age by age, towards
the sun. When each comes within a few hundred
thousand miles of his surface, if he is still incan-
descent, it must be melted and driven into vapour
by radiant heat. Nor, if he has crusted over and
become dark and cool externally, can the doomed
planet escape its fiery end. If it does not become
incandescent like a shooting-star by friction in its
passage through his atmosphere, its first graze on
his solid surface must produce a stupendous flash
of light and heat. It may be at once, or it may
be after two or three bounds, like a cannon-shot
ricochetting on a surface of earth or water, the
whole mass must be crushed, melted, and evapo-
rated by a crash generating in a moment some
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thousands of times a8 much heat as a coal of the
same size could produce by burning.

Thus we have the sober scientific certainty that
heavens and earth shall “ wax old as doth a gar-
ment ;" and that this slow progress must gradu.
ally, by natural agencies which we see going on
under fixed laws, bring about circumstances in
which * the elements shall melt with fervent heat.”
With such views forced upon us by the contempla-
tion of dynamical energy and its laws of transfor-
mation in dead matter, dark indeed would be the
prospects of the humaxn race if unill.minca by that
light which reveals ‘‘new heavens and a new
wth‘"

We have not made in the foregoing pages any
but the slightest allusions to-the remaining known
forms of energy, such as light, electric motion, ete,
Nor have we examined into the nature and effects
of the so-called vital force. All that we need at
present say of them is, that, as far as experiment
has yet taught us, nothing known with regard to
them can modify the preceding conclusions. For,
as we may show in a future paper, light, electrio
motion, and all other forms of energy, ultimately
become heat, and, therefore, though the progress
of energy through ‘hese various stages may modify
the course of events, it cannot in the least affect
their inevitable termination,
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4  The Barometer Story

Alexander Calandra

1964

OME timme ago, | received a call

from a colleague who asked if I
would be the referee on the grading
of an examination question. It scemed
that he was about to give a student
« zero for his answer to a physics ques-
tion, while the student claimed he
shonld receive a perfect score and
would do so if the system were not set
up against the student. The instructor
and the student agreed to subinit this
to an impartial arbite:, and I was
sclected.

The Barometer Problem

I went to 1ny colleague's office and
rcad the examination question, which
was, "Show how it is possible to deter-
mine the height of a tall building with
the aid of a barometer.”

The student's answer was, “Take the
barometer to the top of the building,
attach a long rope to it, lower the ba-
rometer to the street, and then bring
it up, measuring thc length of the rope.
The length of the rope is the height of
the building.”

Now, tlus is a very interesting an-
swer, but should the student get credit
for it? I pointed out that the student
really had a strong case for full credit,
since he had answered the question
completely and correctly. On the other
hand, if full credit were given, it could
well contnbute to a high gradc for the
student in his physics course. A high
grade is supposed to certify that the
student knows some physics, but the
answer ,to thc question did not con-
firm this. With this in mind, I suggested
that the student have another try at
answering the question, I was not sur-
prised that my colleague agreed to

this, but I was surprised that the stu-
dent did.

Acting in terins of the agreement, I
gave the student six minutes to an-
swer the question, with the warmng
that the answer should show some
knowledge of physics. At the end of
five minutes, he had not written any-

thing. [ asked if he wished to give up, ™

since 1 had another class to take care
of, but he said no, he was not giving
up. He had many answers to this prob-
lem; he was just thinking of the best
one. I excused myself for interrupting
him, and asked him to please go an.
In the next minute, he dashed off his
answer, which was:

“Take the barometer to the top of
the building and lean over the edge of
the roof. Drop the barometer, timing
its fall with a stopwatch. Then, using
the formula S =% at®, calculate the
height of the building.”

At this point, I asked my colleague
if he would give up. He conceded and
I gave the student almost full credit. In
leaving my colleagne’s office, I recalled
that the student had said hc had other
answers to the problem, so I asked
him what they were. “Oh, yes,” said
the student. “There are many ways of
getting the height of a tall building
with the aid of a barometer. For ex-
ample, you could take the barometer
out on a sunny day and measure the
height of the barometer, the length of
its shadow, and the length of the shad-
ow of the building, and by the use
of simple proportion, determine the
height of the building.”

“Fine,” I said. “And the others?”

“Yes,” said the student. “There is a

" very basic measurement metliod that

pe
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present sysiem of

you will like. In this method, you take
the barometer and begin to walk up
the stairs. As you climb the stairs, you
mark off the length of the barometer
along the wall. You then count the
number of marks, and this will give
you the height of the building in ba-
rometer units. A very direct method.

“Of course, if you want a more

sophisticated method, you can tie the
barometer to the end of a string, swing
it as a pendulum, and determine the
value of ‘g’ at the street Ievel and at
the top of the building. From the dif-
ference between the two values of ‘g,
the height of the building can, in prin-
ciple, be calculated.”
. Finally he concluded, “If you don't
limit me to physics solutions to this
problem, there are many other an-
swers, such as taking the barometer to
the basement and knocking on the
superintendent’s door. When the
superintendent answers, you speak to
him as follows: ‘Dear Mr. Superin-
tendent, here I have a very fine ba-
rometer. If you will tell me the height
of this building, I will give you this
barometer,”

At this point, I asked the student if
he really didn’t know the answer to
the problem. He admitted that he did,
but that he was so fed up with college
instructors trying to teach him how
to think and to use critical thinking,
instead of showing him the structure
of the subject matter, that he decided
to take off on what he regarded mostly
as a sham.
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The kinetic theory of gases is a marvelous structure of
interconnecting assumption, prediction, and experiment,
This chapter supplements and reinforces the discussion

of kinetic theory in the text of Unit 3.

The Great Molecular Theory of Gases

Eric M. Rogers

1960

Newton's theory of universal gravitation was a
world-wide success. His book, the Principis, ran
into three editions in his lifetime and popular studies
of it were the fashion in the courts of Europe.
Voltaire wrote ar exposition of the Principiz for
the general reader; books were even published on
“Newton’s Theory expounded to Ladies.” Newton’s
theory impressed educated people not only as a
brilliant ordering of celestial Nature but as a model
for other grand explanations yet to come. We con-
sider Newton’s theory a good one because it is
simple and productive and links together many
different phenomena, giving a general feeling of
understanding. The theory is simple because its
basic assumptions are a few clear statements. This
simplicity is not spoiled by the fact that some of
the deductions need difficult mathematics. The suc-
cess of Newton's planetary theory led to attempts
at more theories similarly based on the laws of
motion. For example, gases seem simple in behavior.
Could not some theory of gases be constructed, to
account for Boyle’s Law by “predicting” it, and to
make other predictions and increase our general
understanding?

Such attempts led to a great molecular theory of
gases. As in most great inventions the essential dis-
covery is a single idea which seems simple enough
once it is thought of: the idea that gas pressure is
due to bombardment by tiny moving particles, the
“molecules” of gas. Gases have simple common
properties. They always 11 their container and
exert a uniform pressure all over its top, bottom, and
sides, unlike solids and liquids. At constant tempera-
ture, PRESSURE * vVOLUME remains constant, however
the gas is compressed or expanded. Heating a gas
increases its pressure or volume or both—and the
rate of increase with temperature is the same for all
gases (“Charles’ Law”). Gases move easily, diffuse
among each other and seep through porous walls.

Could these properties be “explained” in terms of
some mechanical picture? Newton's contemporaries
revived the Greek philosophers’ idea of matter being
made of “fery atoms” in constant motion. Now, with
a good system of mechanics they could treat such a
picture realistically and ask what “atoms” would do.
The most striking general property that a theory
should explain was Boyle’s Law.

Boyle’s Law

In 1661 Boyle announced his discovery, “not
without delight and satisfaction” that the pressures
and volumes of air are “in reciprocal proportions.”
That was his way of saying: PRESSURE « 1/VOLUME
Or PRESSURE * VOLUME remains constant, when air is
compressed. It was well known that air expands
when heated, so the restriction “at constant tempera-
ture” was obviously necessary for this simple law.
This was Boyle’s discovery of the “spring of the
air"—a spring of variable strength compared with
solid Hooke’s Law springs.

In laboratory you should try a “Boyle’s-Law
experiment” with a sample of dry air, not to “dis-
cover” a law that you already know, but as a prob-
lem in precision, “your skill against nature.” You
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will be limited to a small range of pressures (say
% atmosphere to 2 atm.) and your accuracy may
be sabotaged by the room temperature changing
or by a slight taper in the glass tube that contains
the sample If you plot your measurements on a
graph showing PRESSURE vs. voLuME you will find
they mark a hyperbola—but that is too difficult a
curve to recognize for sure and claim as verification
of Boyle’s Law. Then plot PREsSURE vs. 1/VOLUME
and look for a straight line through the origin.
Boyle’s measurements were fairly rough and ex-
tended only from a fraction of an atmosphere to
about 4 atm. If you make precise measurements
with air you will find that pV changes by only a few
tenths of 1% at most, over that range. Your graph of
p vs. 1/V will show your experimental points very
close to a straight line through the origin. Since
MAss/VOLUME is density and Mass is constant, values
of 1/V represent pEnsiTY, and Boyle's Law says

>~ -HIGH TEmPp - > - -
>\~ - -ROOM TE/AP- > —-.

1 iG. 25-2. BoYLE’S LAw IsOTHERMALS

PRESSURE o DENSITY. This makes sense on many a
simple theory of gas molecules: “put twice as many
molecules in a box and you will double the pressure.”

All the measurements on a Boyle’s-Law graph
line are made at the same temperature: it is an
isothermal line. Of course we can draw several iso-
thermals on one diagram, as in Fig. 25-2.

If the range of pressure is increased, larger devia-
tions appear—Boyle’s simple law is only an approx:-
mate account of real gas behavior. It fite well at low
pressures but not at high pressures wii=- the sample
is crowded to high density. Fig. 25- shows the

! Even modern glass tubing is slightly tapered, unless made
uniform by an expensive process; so when experiments “to
verify Bo: f;'s Law"” show deviations from pV = constant they
are usually exhibiting tube-taper rather than misbehavior of
air. If the air sample is replaced by certain other gases such
as CO;, or by some organic vapor, real deviations from
Boyle’s Law become obvious and interesting. See Ch. 30.

3 The only safe shapes of graphs for testing a law, or find-
ing one, are straight lines and circles.

experimental facts for larger pressures, up to 3000
atmospheres. (For graphs of CO,’s behavior, in-
cluding liquefaction, see Ch, 30.)

Theory

Boyle tried to guess at a mechanisim underlying
his experimental law. As a good chemist, he pic-
tured tiny atomic particles as the responsible agents.
He suggested that gas particles might be springy,
like little balls of curly wool piled together, resisting
compression. Newton placed gas particles farther
apart, and calculated a law of repulsion-force to
account for Boyle’s Law. D. Bernoulli published a
bombardment theory, without spect:] force-laws,
that predicted Boyle’s Law. He pointed out that
moving particles would produce pressure by bom-
barding the container; and he suggested that heating
air must make its particles move faster. This was the
real beginning of our present theory. He made a
brave attempt, but his account was incomplete.
A century later, in the 1840, Joule and others set
forth a successful “kinetic theory of gases,” on this
simple basic view:

A gas con.ists of small elastic particles in
rapid motion: and the pressure on the walls
is simply the effect of bombardment.

Joule showed that this would “explain” Boyle’s Law,
and that it would yield important information about
the gas particles themselves. This was soon polished
by mathematicians and physicists into a large,
powerful theory, capable of enriching our under-
standing,

In modern theories, we call the moving particles
molecules, a name borrowed from chemistry, where
it means the smallest particle of a substance that
exists freely. Split a molecule and you have separate
atoms, which may have quite different properties
from the original substance. A molecule of water,
H,0, <plit into atoms yields two hydrogen atoms
and one oxygen atom, quite different from the par-
ticles or molecules of water. Left 2"sne, these sepa-
rated atoms gang up in pairs, .1,, O,—molecules of
hydrogen and oxygen gas. In kinetic theory, we deal
with the complete molecules, and assume they are
not broken up by collisions. And we assume the
molecules exert no forces on each other except
during collisions; and then, when they are very
close, they exert strong repulsive forces for a very
short time: in fact that is all a collision is.

You yourseif have the ne:essary tools for con-
structing a molecular theory of gases. Try it. Assume
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“BOYLE'S LAW” FOR AIR

4 REGION OF 4 atm., ;
PRESSURE BOYLE'S to :
(@atm) R SIMPLE TEST .JL‘; atm,
2 1 |
0 , R VOLUME SCALE
0 1000 v 3000 EXPANDED, x 10,
PRESSURE SCALE
4 COMPRESSED, + 10.
Volume —

1% %o low
40 1
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(@tm) Volune 1% low
20
REGION OF BOYLE'S SIMPLE TEST
Extends to volume >
4 + + + === > 15,000
100 200 300 400 500 ¢oo
0 =
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X 10 2000
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Fic. 25-3. DEviaTIONs FROM BoOYLE's Law FOR AR AT Room TEMPERATURE
The curve shows the PRZSSURE:VOLUME relationsh!g for an ideal gas obeying Boyle's Law.
The points show the behavior of air, indistinguishable from the curve at Jow pressures.

that gas pressure is due to molecules bouncing many bouncing molecules, to emerge with a pre-
elastically on the containing walls. Carry out the diction of the behavior of gases. After you have
first stages by wurking through Problems 1 and 2. tried the problems, return to the discussion of de-
They start with a bouncing ball and graduate to tails.
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The Great Molecular Theory of Gases
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Difficulties of the Simple Theory

The relation you worked out in Problem 2 seems to
}aredict a steady pressure and Boyle's-Law behavior,
rom molecular chaos. How can a rain of molecules
hitting a wall make a steady pressure? Only if the col-
lisions come in such rapid succession that their bumps
seem to smooth out into a constant force. For that tge
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Fic. 25-6. Smoorrine Our Impacts

molecules of a gas must be exceedingly numerous, and
very small. If they are small any solid pressure-gauge
or container wall will be enormously massive compared
with a single gas molecule, so that, as imnacts bring it
momentum, it will smooth them out to the steady pres-
sure we observe. (What would you expect if the con-
tainer wall were as light as a few mof;cules?)

The problem pretended that molecules travel
straight l}:-om end to end and never collide with each
other en route. They certainly do collide—though we
cannot say how often without further information. How
will that affect the prediction?

% PROBLEM 3. COLLISIONS !N SIMPLE THEORY

(a) Show that it does not matter, in the simple derivation
of Problems 1 and 2, whether molecules collide or not.
(Consider two molecules moving to and fro from end to end,
just missing each other as they cross. Then suppose they
coll:de head-on and rebound. Why will their contribution to
the pressure be unchonged? Explain with a diagram.)

(b) What special assumption obout molecules is required
far (a)?

(c) Suppose the molecules swelled up and become very
bulky (but kept the same speed, mass, etc.), would the effect
of mutual collisions be an increose of pressure (for the same
volume etc.) or a decrease ar whot? (Note: “bulky” means
large in size, not necessanly large in mass.)

(d) Give a clear reason for your answer to (c).

Molecular Chaos

Molecules hitting each other, and the walls, at ran.
dom—some head on, some obliquely, some glancing—
cannot all keep the same speed v. One will gain in a
collision, and another lose, so that the gas is a chaos of
molecules with random motions whose speeds (chang-
in™ at every collision) cover a wide range. Yet they

40

must preserve some constancy, because a gas exerts a
steady pressure.

In the prediction p+V = (%)IN mv?], we do not
have all N'molecules moving with the same speed, each
contributing m v? inside the brackets. Instead we have
molecule #1 with its speed v,, molecule #2 with v,, .. .,
molecule N with speed vy. Then

pV=(RB)Imo24+mo2+... +moy?
=H)Im(v3+024... 404 ]
= (%) [m (N+avErAGE ©?) ]  See note 3.

The v* in our prediction must therefore be an average
v?, s0 that we write a bar over it to show it is an average
value. Our theoretical prediction now runs:

PRESSURE * VOLUME = % N * m « 02,

We know that if we keep a gas in a closed bottle its
pressure does not jump up and down as ti-  goes on;
its pressure and volume stay constant, ‘rherefore in
spite of all the changes in collisions, the molecular v?
stays constant. Already our theory helps us to picture
some order—constant v*—among molecular chaos.

A More Elegant Derivation

To most scientists the regimentation that leads to the
factor % is too artificial a trick. Here is a more elegant
method that treats the molecules’ random velocities
honestly with simple statistics. Suppose molecule #1 is
moving in a slanting direction in the box, with velocity
0, (See Fig. 25-7.) Resolve this vector v, into three

b !
= y :x‘; :"
| AN\ v AT
G [ /0
y“/ \/ N\ ! [
A
/I T ‘v K
¥ *

Fie. 25-7. ALTERNATIVE TREATMENT OF
Gas MoLecute Motion
(More professional, less artificial.)

In this we keep the randain velocities, avoiding
. regimentation, but split each velocity v into three
components, xv, v, sv, parallel to the sides of the box.
Then we deal with »* in calculating the pressure and
arrive at the same result. Sketches show three molecules

with velocities split into components.

components along directions x, y, 2, parallel to the edges ’
of tl?e box. Then v, is the resultant of v, along x and
s0, along y and ,0, along z; and since these are mutually
perpendicular, we have, by the three-dimensional form

¥ Because AVERAGE v* = (sum of all the v* values)/(num-
ber of v values) = (o2 4 vo? ... + vn?)/(N)
S ot 4 o) =N (AvERACE 0*) or N+ &P
This v is called the “mean square velocity.” To obtain it, take
the speed of each molecule, at an instant, square it, add all
the squares, and divide by the number of molecules. Or,

choose one molecule and average its v* over a long time—
say 2 billion collisions.

v #

[




Fic. 25-8. Verocrry COMPONENTS
PYTHACORAS: 0 =01 4,0 4 o0®

of Pythagoras’ theorem: 0,2 = ,0,2 +,0.* + 0,
And for molecule #2 v,2 =02 4,0, +,0,%
And for molecule #3 0,2 = ;0,24 y0,2 4 ,0,%

and so on e e e e e,
And for molecule #N vy? = ,05% 4,05 + O8°
Add all these equations:

(v3+02+02+...+0)
= (x0,2 + 02 + 02+ ...+ ;0087
+ (0,2 +,02 + 502+ ... +,007)
+ (024 02+ 02+ ...+ 080)
Divide by the number of molecules, N, to get average
values: rr i i W

Appealing to symmetry, and ignorin'i the small bias
given by gravity, we claim that the three averages on
the right are equal—the random motions of a statisti-
cally large number of molecules should have the same
distribution of velocities in any direction.
¢ ;6; = ;;; = ?
=307
To gredict the pressure on the end of the box we pro-
ceed as in Problem 2, but we use v, for a molecule’s
velocity along the length of the box. (That is the velocity
we need, because 4 and ,v do not help the motion
from end to end and are not involved in the change of
momentum at each end.) Then the contribution of
molecule #1 to PRESSURE * VOLUME is m - 0,2 and the
contribution of all N molecules is
m (024 02+ ...+ 05°) or me N- 07
and by the argument above this is m+N - (v?/3)
PRESSURE * VOLUME = (%) N-m - 0*
(If you adopt this derivation, you should carry through
the algebra of number of hits in ¢ secs, etc., as in
Problem 2.)

Molecular Theory's Predictions
Thinking about molecular collisions and using
Newton’s Laws gave the (%) N+m-o? prediction:
PRESSURE * VOLUME = (%) N*-m*0*
This looks like a prediction of Boyle’s Law. The

fraction (%) is a constant number; N, the number of
molecules, is constant, unless they leak out or split

The Great Molecular Theory of Gases

up; m, the mass of a molecule, is constant. Then if

the average speed remains unchanged, (%) N-m vt
remains constant and therefore p+V should remain
constant, as Boyle found it does. But does the speed
of molecules remain fixed? At this stage, you have
no guarantee. For the moment, anticipate later dis-
cussion and assume that molecular motion is con-
nected with the heat-content of a gas, and that at
constant temperature gas molecules keep a constant
average speed, the same speed however much the
gas is compressed or rarefied.* Later you will receive
clear reasons for believing this. If you accept it now,
you have predicted that:

The product p+ V is constant for a gas at
constant temperature.

You can see the prediction in simplest form by
corsidering changes of penstTy instead of voLuMe:
just put twice as many molecules in the same box,
and the pressure will be doubled.

A marvelous prediction of Boyle’s Law? Hardly
marvelous: we had to pour in many assumptions—
with a careful eye on the desired result, we could
scarcely help choosing wisely. A theory that gathers
assumptions and predicts only one already-known
law—and that under a further assumption regard-
ing temperature—would not be worth keeping. But
our new theory is just beginning: it is also helpful
in “explaining” evaporation, diffusion, gas friction;
it predicts effects of sudden compression; it makes
vacuum-pumps easier to design and understand.
And it leads to measurements that give validity to
its own assumptions. Before discussing the develop-
ment, we ask a basic question, “Are there really any
such things as molecules?”

Are there really molecules?

“That’s the worst of circumstantial evidence.
The prosecuting attorney has at his command
all the facilities of organized investigation. He
uncovers facts. He selects only those which, in
his opinion, are significant. Once he’s come to
the conclusion the defendant is guilty, the only
facts he considers significant are those which
point to the guilt of the defendant. That's why
circumstantial evidence is such a lar. Facts
themselves are meaningless. It’s only the inter-
pretation we give those facts which counts.”

“Perry Mason”—Erle Stanley Gardner®

4 Actually, compressing a gas wanms it, but we believe that
when it cools back to its original temperature its molecules,
though still crowded close, return to the same average speed
as before compression.

® The Case of the Perjured Parrot, Copyright 1939, by
Erle Stanley Gardner.
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A century ago, molecules seemed useful: a help-
ful concept that made the regularities of chemical
combinations easy to understand and provided a
good start for a simple theory of gases. But did they
really exist? There was only circumstantial evidence
that made the idea plausible. Many scientists were
skeptical, and at least one great chemist maintained
his right to disbelieve in molecules and atoms even
until the beginning of this century. Yet one piece of
experimental evidence appeared quite early, about
1827: the Brownian motion.

The Brownian Motion

The Scottish botanist Robert Brown (1773-1858)
made an amazing discovery: he practically saw
molccular motion. Looking through his microscope
at small specks of solid suspended in water, he saw
them dancing with an incessant jigging motion. The
microscopic dance made the specks look alive, but
it never stopped day after day. Heating made the
dance more furious, but on cooling it returned to its
original scale. We now know that any solid specks
in any fluid will show such a dance, the smaller the
speck the faster the dance, a random motion with
no rhyme or reason. Brown was in fact watching
the effects of water molecules jostling the solid
specks. The specks were being pushed around like
an elephant in the midst of a football game.

Watch this “Brownian motion” for yourself. i.ook
at small specks of soot in water (“India ink”) with
a high-magnification microscope. More easily, look
at smoke in air with a low-power microscope. Fill
a small black box with smoke from a cigarette or a
dying match, and illuminate it with strong white
light from the side. The smoke scatters bluish-white
light in all directions, some of it upward into the
microscope. The microscope shows the smoke as a
crowd of tiny specks of white ash which dance
about with an entirely irregular motion* (See Fic.
30-3 for an example)

Watching the ash specks, you can see why Brown
at first thought he saw living things moving, but you
can well imagine the motion to be due to chance
bomba.dment by air molecules. Nowadays we not
only think it may be that; we are sure it is, because
we can calculate the effects of such bombardment
and check them with observation. If air molecules
were infinitely small and infinitely numerous, they

3 There may also be general drifting motions—convection
currents—but these are easily distinguished. An ash speck
in focus shows as a small sharp wisp of white, often oblong;
but when it drifts or dances away out of focus the micro-
scope shows it as a fuzzy round blob, just as camera pictures
show distant street lights out of focus.

would bombard a big speck symmetrically from all
sides and there would be no Brownian motion to
see. At the other extreme, if there were only a few
very big molecules of surrounding air, the ash
speck would make great violent jumps when it did
get hit. From what we see, we infer something be-
tween these extremes; there must be many mole-
cules in the box, hitting the ash speck from all sides,
many times a second. In a short time, many hun-
dreds of molecules hit the ash speck from every
direction; and occasionally a few hundreds more
hit one side of it than the other and drive it noticea-
bly in one direction. A big jump is rare, but several
tiny random motions in the same general direction
may pile up into a visible shift.* Detailed watching
and calculation from later knowledge tell us that
what we see under the microscope are those gross
resultant shifts; but, though the individual move-
ments are too small to see, we can still estimate their
speed by cataloguing the gross staggers and ana-
lysing them statistically,

You can see for yourself that smaller specks dance
faster. Now carry out an imaginary extrapolation to
smaller and smaller specks. Then what motion
would you expect to see with specks as small as
molecules if you could see them? But can we see
molecules?

Seeing molecules?

Could we actually see a molecule? That would indeed
be convincing—we feel sure that what we see is real,
despite many an optical illusion. All‘through the last
century’s questioning of molecules, scientists agreed
that seeing one is hopeless—not just unlikely but im-
possible, for a sound physical reason. Seeing uses light,
which consists of waves of very short wave%ength, only
a few thousand Angstrém Units? from crest to crest. We
see by using these waves to form an image:

with the naked eye we can see the shape of a pin’s
head, a millimeter across, or 10,000,000 AU

with a magnifying cﬁlass we examine a fine hair,
1,000,000 AU thi

with a low-power microscope we see a speck of smoke
ash, 100,000 AU pe

with a high-power microscope, we see bacteria, from
10,000 down to 1000 AU

but there the sequence stops. It must stop because the
wavelength of visible light sets a limit there. Waves
can make clear pattems of obstacles that are larger

¢ Imagine an observer with poor sight txacing the motion
of an active guest at a crowded party. He might fail to see
the guest’s detailed motion of small’ steps here and there,
and yet after a while he would notice that the guest had
wandered a considerable distance.

71 Angstrém Unit, 1 AU, is 10 meter.
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than their wavelength, or even about their wavelength
in size. For example, ocean waves sweeping past an
island show a clear “shadow” of calm beyond. But waves
treat smaller obstacles quite differently. Ocean waves
meeting a small wooden post show no calm behind.
They just lollop around the post and join up beyond it
as if there were no post there. A blind man paddling
along a stormy seashore could infer the presence of an
island nearby, but would never know about a small post
just offshore from him.® Light waves range in wave-
{ength from 7000 AU for red to 4000 for violet. An
excursion into the short-wave vitraviolet, with photo-
graphic film instead of an eye, is brought to a stop by
absorption before wavelength 1000 AU: lenses, speci-
men, even the air itself, are “black” for extreme ultra-
violet light. X-rays, with shorter wavelength still, can
pass through matter and show grey shadows, but the
practically cannot be focused by lenses. So, althou
X-rays have the much shorter wavelength that could
pry into much finer structures, they give us only un-
magnified shadow pictures. Therefore the limit imposed
by light’s wavelength seemed impassable. Bacteria down
to 1000 AU could be seen, but virus particles, ten times
smaller, must remain invisible. And molecules, ten times
smaller still, must be far beyond hope. Yet viruses, re-
sponsible for many diseases, are of intense medical
interest—we now think they may mark the borderline
between living organisms and plain chemical molecules.
And many basic questions of chemistry might be an-
swered by seeing molecules.

The invisibility of molecules was unwelcome, but
seemed inescapable. Then, early in this century, X-rays
offered indirect information. The well-ordered atoms
and molecules of crystals can scatter X-rays into regular
patterns, just as woven cloth can “diffract” light into
regular patterns—look at a distant lamp at night
through a fine handkerchief or an umbrella, X-ray pat-
terns revealed both the arrangement of atoms in crystals
and the spacing of their layers. Such measurements
confirmed the oil-film estimates of molecular size. More
recently, these X-ray diffraction-splash pictures have
sketched the general shape of some big molecules—
really only details of crystal structure, but still a good
hint of molecular shape. Then when physicists still
cried “no hope” the electron microscope was invented.
Streams of electrons, instead of light-waves, pass th:ough
the tiny object under examination, and are focused by
electric or magnetic fields to form a greatly magnified
image on a pghotographic film. Electrons are incom-
parably smaller agents than light-waves,? so small that

'Tinﬂ obstacles do produce a small scattered ripple, but
this tells nothing about their shape. Bluish light scattered
by very fine smoke simply indicatcs there are very tiny
sg:cks there, but does not say whetaer they are round or
sharp-pointed or oblong. The ‘still more bluish light of the
sky is sunlight scattered by air molecules.

v Electrons speeding through the electron microscope be-
have as if they too have a wavelength, but far shorter than
the wavelength of light. So they ofer new possibilities of
“vision,” whether you regard them as minute bullets smaller
than atoms, or as ultra-short wave pattems. A technology of
“glectron optics” has developed, with “lenses” for electron
microscopes and for television tubes (which are electron
projection-lanterns).

hl
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even “molecules” can be delineated. Then we can “see”
virus particles and even biti molecules in what seem to
be reliable photographs with huge magnifications. These
new glimpses of molecular structure agree well with
the speculative pictures drawn by chemists arguing
very cleverly from chemical behavior.

Recently, still sharper methods have been de cloped.
At the end of this book you will see a picture of the
individual atoms of metal in a needle point. Why not
show that now? Because, like so much 1n atomic physics,
the method needs a sophisticated knowledge of assump-
tions as well as techniques before you can decide in
what sense the ghotogmph tells the truth. Going still
deeper, very-high-energy electrons are now being used
to probe the structure of atomic nuclei, yielding indirect
shadow pictures of them.

In the last 100 years, molecules have graduated from
being tiny uncounted agents in a speculative theory to
being so real that we even expect to “see” their shape.
Most of the things we know about them—speed, num-
ber, mass, size—were obtained a century ago with the
help of kinetic theory. The theory promoted the meas-
urements, then the measurements gave validity to the
theory. We shall now leave dreams of seeing molecules,
and study what we can measure by simple experiments.

Measuring the Speed of Molecules
Returning to our prediction that:
PRESSURE * VOLUME = (%) N-m - v?
We can use this if we trust it, to estimate the actual
speed of the molecules. N is the number of molecules
and m is the mass of one molecule so Nm is the total

mass M of all the molecules in the box of gas. Then
we can rewrite our prediction:
PRESSURE * VOLUME = (%) * M * v?

where M is the total mass of gas. We can weigh a
big sample of gas with measured volume at known
pressure and substitute our measurements in the
relation above to find the value of v and thus the
value of the average speed.

Fig. 25-9 shows the necessary measurements,
Using the ordinary air of the room, we measure its
pressure by a mercury barometer. (Barometer
height and the measured density of mercury and
the measured value of the Earth’s gravitational field
strength, 9.8 newtons per kilogram, will give the
pressure in absolute units, newtons per square
meter.)*® We weigh the air which fills a flask. For
this, we weigh the flask first full of air at atmospheric
pressure and second after a vacuum pump has taken
out nearly all the air. Then we open the flask under
water and let water enter to replace the air pumped

10 Since we made our kinetic theory prediction with the
help of Newton’s Law 11, the predicted force must be in

absolute units, newtons; and the predicted pressure must be
in newtons per square meter.

|
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Fic. 25-9.
MFAsURING MOLECULE VELOCITIES INDIRECTLY,
BUT SIMPLY, AssUMING KINETIC THEORY,

out, Measuring the volume of water that enters the
flask tells us the volume of air which has a known
mass. Inserting these measurements in the predicted
relation we calculate v? and thence its square root

V/(v%) which we may call the “average speed,” v
(or more strictly the “root mean square,” or R:M.S.
speed). You should see these measurements made
and calculate the velocity, as in the following
problem.

% PROBLEM 4, SPEED OF OXYGEN MOLECULES

Experiment shows that 32 kg of oxygen occupy 24 cubic
meters at atmospheric pressure, at room temperature.
(a) Calculate the density, MASS/VOLUME, of oxygen.
(b) Using the relation given by kinetic theory, calculate the
mean square velocity, v*, of the malecules,
(c) Take the square root and find an “average” velocity, in
meters/sec.
(d) Alsa express this very roughly in miles/hour.
(Take 1 kilometer to be 5/8 mile)

Air molecules moving % mile a second! Here is
theory being fruitful and validating its own assump.
tion, as theory should. We assumed that gases con-
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sist of molecules that are moving, probably moving
fast; and our theory now tells us how fast, with
the help of simple gross measurements. Yet theory
cannot prove its own prediction is true—the result
can only be true to the assumptions that went in.
So we need experimental tests. If the theory passes
one or two tests, we may trust its further predictions,

Speed of Molecules: experimental evidence

We have rough hints from the speed of sound and
from the Brownian motion,

PROBLEM 5, SPEED OF SOUND

We believe that saund is carried by waves of campression
and rarefaction, with the changes of crowding and motion
handed on from molecule to molecule at collisions. If air does
consist of maving malecules far apart, what can yau say
about molecular speed, given that the measured speed of
sound in air is 340 meters/sec (~ 1100 ft/sec)?

PROBLEM 6. BROWNIAN MOTION

Looking at smake under a microscope yau will see large
specks of ash jigging quite fast; small specks jig faster still,
() There may be specks too small to see. What motian

would you expect them to have?
(b) Regarding a single air molecule as an even smaller ““ash
speck,” what can you state about its motion?

The two problems above merely suggest general
guesses. Here is a demonstration that shows that
gas molecules move very fast. Liquid bromine is
released at the bottom of a tall glass tube.® The

() Bromine diffusing in air:  (6) Bromine reeased i vacuum,

To vatuum
T

-3
Vacuunm

Flexible rubber
connection to enable
capsules fong, thin
ek to b¢ broken

(6) Sketch of capsutz,

abous Ralf (fe-sine R ——er—

Fi1c. 25-10. MorioN oF BRoMINE MOLECULES:
DEMONSTRATION OF MOLECULAR SpEED,

* The bromine is inserted as liquid bromine in a small glass
capsule with a long nose that can be broken easily.
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liquid evaporates immediately to a brown vapor
or “gas,” which slowly spreads throughout the tube.
The experiment is repeated in a tube from which
all air has been pumped out. Now the brown gas
moves very fast when released. (In air, its molecules
still move fast, but their net progress is slow be-
cause of many collisions with air molecules.)

Direct Measurement

The real test must be a direct measurement.
Molecular speeds have been measured by several
experimenters. Here is a typical experiment, done
by Zartman. He let a stream of molecules shoot
through a slit in the side of a cylindrical drum that
could be spun rapidly. The molecules were of bis-
muth metal, boiled off molten liquid in a tiny oven
in a vacuum. A series of barriers with slits selected
a narrow stream to hit the drum. Then each time
the slit in the drum came around, it admitted a small
flock of moving molecules. With the drum at rest,
the molecules travelled across to the opposite wall
inside the drum and made a mark on a receiving
film opposite the slit. With the drum spinning, the
film was carried around an appreciable distance
while the molecules were travelling across to it, and
the mark on it was shifted to a new position. The
molecules’ velocity could be calculated from the
shift of the mark and the drum’s diameter and spin-
speed. When the recording film was taken out of
the drum it showed a sharp central mark of de-
posited metal but the mark made while it spun was
smeared out into a blur showing that the molecular
velocities had not all been the same but were spread
over a considerable range. Gas molecules have ran-
dom motion with frequent collisions and we must
expect to find a great variety of velocities at any
instant. It is the average velocity, or rather the root-
mean-square average, V/(1?), that is involved in
kinetic theory prediction. The probable distribution
of velocities, clustering round that average, can be
predicted by extending simple kinetic theory with
the help of the mathematical statistics of chance. In
Zartman’s experiment, we expect the beam of hot
vapor molecules to have the same chance distribu-
tion of velocities with its peak at an average value
characteristic of the temperature. Measurements of
the actual darkening of the recording film showed
just such a distribution and gave an average that

The: Grent & dacgis Theory o

ZARTMAN'S EXPERIMENT

S
VACUUM

() Varous stages g‘ the rotagon of the deum.

S[e[elE

2

SPECIMEN FILM (wurolled)
| - marks made fy molecules of various speeds

zero mark” made 55 molecules when drum
15 not {}Jl'mu'ng

Fic. 25-11, MeasuriNnG MoLECULE VELOCITIES DIRECTLY
*(a) Sketch of Zartman's experiment,
(b) These sketches show varfous stages
of the rotation of the drum.
(c) Specimen film (unrolled).

agreed well with the value predicted by simple
theory (see sketch of graph in Fig. 25-12)."

Molecular Speeds in Other Gases. Diffusion

Weighing a bottle of hydrogen or helium at at-
mospheric pressure and room temperature shows
these gases are much less dense than air; and car-
bon dioxide is much more dense. Then our predic-

11 Zartman’s method is not limited to this measurement,
One method of separating uranium 235 used spinning slits,
though the uranium atoms were electrically charged and
were given high speeds by electric fields. And mechanical
“chopper” systems are used to sort out moving neutrons.

Such choppers operate like traffic lights set for some constant
speed. The simplest protot);pe of Zartman's experiment is the
scheme shown in Fig, 8-8 for measuring the speed of a rifle
bullet.

&
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Fic. 25-12. ResuLts OF ZARTMAN'S EXPEIIMENT

The curve, drawn by a grayncss-mcasuring-machine, shows
the experimental results. The crosses show valucs
predicted by Kinetic theory with simple statistics.

tion pV = (1) M¥* tells us that hydrogen and
helimm molecules move faster than air molecules
(at the same tempcerature), and carbon dioxide
molecules slower. Here are actual valucs:

Measurements at Room
Temperature and

Gas Atmospheric Pressure
Volume Mass
hydrogen 24cu.meters  2.0kilograms
helium ¢4 40kg
carbon dioxide 24 ¢ - 44.0kg
oxygen 24« 320kg

nitrogen
air (5 oxygen
4 nitrogen)

24 *  280kg
24 “  288kg

% PROBLEM 7. SPEEDS

() 1 oxygen molecules move obout } mile/sec at room
tenperature, how fost do hydrogen molecules move?

(i) How does the average speed of helium molecules com-
pare with thot of hydrogen molecules ot the some tem-
perature? (Give the ratio of “average”™ speeds.)

(i) How does the speed of carbon dioxide molecules com-
pare with thot aof air molecules ot the some tempera-
ture? (Give the ratio of “average” speeds.)

PROBLEM 8

Moking o risky guess,” soy whether you would expect the
speed of sound in helium ta be the same as in air, or bigger
or smaller. Test your guess by blowing an organ pipe first
with air, then with helium (or with carbon dioxide). Or
breothe in helium and then talk, using your mouth and nose
cavities as miniature echoing orgon pipes. A change in the
speed of sound chonges the time taken by sound waves to

* It is obviously risky, since we are not considering the mechonism
of sound tronsmission n detail. In fact there 1s an unexpected
factor, which is different for helium: the ease with which the gos
heots up os sound-comp pass through. This Y nse
of temperature makes sound compressions travel foster. The effect
1s more pronounced in helium thon in air, maoking the speed of
sound 89 bigger then simple companson with air suggests.
Kinetic theory can predict this effect of specific heat, telling us
that helium must have 6 smolier heat capacity, for ¢ good atomic-
molecular reason.

bounce up and down the pipe, and thus chonges the fre-
quency at which sound pulses emerge from the mouth, And
that changes the musica! note of the vowel sounds, which
nses to higher pitch ot higher frequency.

PROBLEM 9

How would you expect the speed of sound in air to change
when the pressure is changed without any change of tem-
perature? (Try this question with the following data, for air
at room temperature: 28.8 kg of air occupy 24 cubic meters
ot 1 atmosphere pressure; ot 2 atmospheres they accupy
12 cubic meters.)

Diffusion

If molecules of different gases have such different
speeds, one gas should outstrip another when they
diffuse through long narrow pipes. The pipes must
be very long and very narrow so that gas seeps
through by the wandering of individual molecules
and not in a wholesale rush. The pores of unglazed
pottery make suitable “pipes” for this. See F ig. 25-
13a, b. The white jar | has fine pores that run nght
through its walls. If it is filled with compressed gas
and closed with a stopper §, the gas will slowly leak
out through the pores into the atmosphere, as you
would expect. But if the pressure is the same (at-
mospheric) inside and out you would not expect
any leakage even if there are different gases inside
and outside. Yet there are changes, showing the
effects of different molecular speeds. The demon-
strations sketched start with air inside the jar and
another gas, also at atmospheric pressure, outside.
You see the effects of hyJrogen molecules whizzing
into tne jar faster than air can move out; or of air
moving out faster than CO, molecules craw! in.
These are just qualitative demonstrations of “diffu-
sion,” but they suggest a process for separating
mixed gases. Put a mixture of hydrogen and CO,
inside the jar; then, whether there is air or vacuum
outside, the hydrogen will diffuse out faster than the
CO,, and by repeating the process in several stages

Tl T 7

Fic. 25-13a. DirrusioNn oF Gases
Hydrogen diffuses in through the porous wall J faster
than air diffuses out.
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Fic. 25-13b. Dirrusion or Gasts
Carbon dioxide diffuses in through the porous wall, J, slower than air difuses out.

you could obtain almost pure hydrogen. This is a
physical method of separation depending on a
difference of molecular speeds that goes with a
difference of molecular masses (see Fig. 25-14). It
does not require a difference of chemical properties;
so jt can be used to separate “isotopes,” those twin-
brothers that are chemically identical but differ
slightly in atomic masses. When isotopes were first
discovered, one neon gas 10% denser than the other,
some atoms of lead heavier than the rest, they were
interesting curiosities, worth trying to separate just
to show. Diffusion of the natural neon mixture from
the atmosphere proved the possibility But now with
two ‘uranium isotopes hopelessly mixed as they
come from the mines, one easily fissionable, the
other not, the separation of the rare fissionable kind
is a matter of prime importance. Gas diffusion is
now used for this on an enormous scale. See Prob-
lem 11, and Figs. 25-15, 16 and 17. Also see Chs. 30
and 43.

Temperature

Heating a gas increases p or V or both. With a
rise of temperature there is always an increase of
PV, and therefore of (%) N m vZ. Therefore making
a gas hotter increases v?, makes its molecules move
faster. This suggests some effects of temperature.

% PROBLEM 10

{0) Would you expect the speed of sound to be greoter, less,
or the some in air ot higher temperoture? Explomn,

(b) Would you expect diffusion of goses to proceed foster,
slower, or at the same rote, ot higher temperature? Ex-
plain.

Kinetic Theory To Be Continued

We cannot give more precise answers to such
questions until we know more about heat and tem-
perature and energy. Then we can extract more
predictions concerning gas friction, heat conduc-
tion, specific heats; and we shall find a way of
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Fic. 25-14. UNEQUAL DiFrFusioN oF Gases _
Air and carbon dioxide, each originally at atmospheric pressure, are separated b{ a porous barrier.

At the start, with equal volumes at the same pressure, the two populations have equa

numbers of molecules.

On the average, air molecules stagger through the pores faster than CO; molecules.
Then the populations are no longer equal so the pressures are unequal.
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Fic. 25-15. SepARATION OF URaNtuM Isotores BY DiFFusioN or UF, TuroucH A PoRous BARRIER
Gas molecules hit the barrier, and the walls of its pores, many times—net result: a few get through.

measuring the mass of a single molecule, so that
we can count the myriad molecules in a sample of
gas. We shall return to kinetic theory after a 5! 1dy
of energy. Meanwhile, it is kinetic theory that leads
us towardcs energy by asking a question:

What is myf

The expression (%) Nm v? is very important in
the study of all gases. Apart from the fraction (%)
it is
THI, 57U MBER OF MOLECULES * (mv? for one molecule)
What s mo? for a moving molecule? It is just the
mass multiplied by the square of the speed; but
what kind of thing does it measure? What are its

Fio. 25-16a. SEPARATION OF UnaNtum IsoToPEs BY properties? Is it an important member of the series:
Dirrusion ofF UF, Turoucn A Porous BARRIER. m mv mv? ..., P Weknow m, mass, and treat

Fic. 25-16b. MuLn-STAGE DIFFUSION SEPARATION Fic. 25-17. SepanaTiNG URantum Isotopes By DiFruston :
Mixture diffusing throu%;\ in one stage is pumped to the To effect a fairly complete separation of
fnput of the next sta%:. nused mixture from one stage is U™ F,, thousands of stages are needed,
ac

recycled, pumped back to the input of the preceding stage.
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it as a constant thing whose total is universally con-
served. We know mv, momentum, and trust it as a
vector that is universally conserved. Is mo? equally
useful? Its structure is mv - v or Ft - v or

FORCE * TIME * DISTANCE/TIME.

Then mv* is of the form rorce-*pisTaANCE. Is
that product useful? To push with a force along
some distance needs an engine *nat uses fuel
Fuel . . . money . . . energy. We shall find that
mo*® which appears in our theory of gases needs only
a constant factor (%) to make it an expression of

“energy.”
PROBLEMS FOR CHAPTER 25

% 1. DERIVING MOLECULAR PRESSURE

Work through the question sheets of Problem 1 shown
earlier in this chapter. These lead up to the use of Newton’s
mechanics in a molecular picture of gases.

% 2. KINETIC THEORY WITH ALGEBRA
Work through the question sheets of Problem 2.

Problems 3-10 are in the text of this chapter.

% 11. URANIUM SEPARATION (For more professional
version, see Problem 3 in Ch. 30)

Chemical experiments and arguments show that oxygen
molecules contain two atoms so we write them Oy; hydrogen
molecules have two atoms, written Hs; and the dense vapar
of uranium flouride has structure UFg.

Chemical experiments tell us that the relative masses of
single atoms of O, H, F, and U are 16, 1, 19, 238. Chemical
evidence and a brilliant guess (Avogadros) led to the belief
that a standard volume of any gas at one atmosphere and
room temperature contains the same number of molecules
whatever the gas (the same for 0, Hs, or UFs). Kinetic
theory endorses this guess strongly (see Ch. 30).

(a) Looking back to your calculations in Problem 7 you will
see that changing from O, to H, changes the mass of a
molecule in the proportion 32 ta 2. For the same tem-
perature what change would you expect in the v and
therefore what change in the average \elocity? (That is,
how fast are hydrogen molecules moving at room tem-
perature compared with oxygen anes? Give a ratia show-
ing the proportion of the new speed ta the old. Nate you
do not have to repeat all the arithmetic, just consider the
one factor that changes.)

Repeat (o) for the change from axygen ta uranium
fluoride vapor. Do raugh arithmetic ta find approximate
numerical value.

(b

=

The Great Molecular Theory of Gases

(¢c) Actually there are several kinds of uranium atom The
common one has mass 238 (relative to oxygen 16) but
a rare one (0.7 % of the mixture got from rocks) which s
in fact the one that undergoes fission, has mass 235.
One of the (very slow) ways of separating this valuable
rare uranium from the common one is by converting the
mixture ta fluoride and letting the fluoride vapor diffuse
through a porous wal! Because the fluoride of U235 has
a different molecular speed the mixture emerging after
diffusing through has different proportions.

(1) Does it become richer or poorer in U352

(i) Give reasons for your answer to (1).

(iii) Estimate the percentage difference between average
speeds of [UZ”FO] and [U';"SFG] molecules.

(Note: As discussed in Ch. 11, o change of x % in some
measured quantity Q makes a change of about

¥x% invQ.)

12. Figs. 25-13a and 25-13b show two diffusion demon-
strations. Describe what happens and interpret the experi-

ments.

% 13. MOLECULAR VIEW OF COMPRESSING GAS

(a) When an elastic ball hits a massive wall head-on it

rebounds with much the same speed as its origina! speed.

The same happens when a ball hits a massive bat which

is held firmly. However, if the bat is moving towards the

ball, the ball rebounds with o different speed. Does it
move faster or slower?

(Optional, hard: requires careful thought.) When the bat

is moving towards the ball is the time of the elastic

impact longer, shorter, or the same as when the bat is
stationary? (Hint: !f elastic . . .. S.HM....)

(c) When a gas in a cylinder is suddenly compressed by the
pushing in of a piston, its temperature rises. Guess at an
explanation of this in terms of the kinetic theory of
gases, with the help of (a) above.

(d) Suppose a compressed gas, as in (c), is allowed to push
a piston out, and expand. What would you expect to
observe?

(b

-~

% 14. MOLECULAR SIZE AND TRAVEL

A closed box contdins a large number of gas molecules
at fixed temperature. Suppose the molecules magically be-
came more bulky by swelling up to greater volume, without
any increase in number or speed, without any change of
mass, and without any change in the volume of the box.

(a) How would this affect the average distance apart of the
molecules, center to center (great increase, decrease, or
little change)?

(b) Give a reason far your answer ta (a).

(c) How would this affect the average distance travelled by
a molecule between one collision and the next (the
“mean free path’’)?

(d) Give a reason far your answer to {c).
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Abandoning a mechanical view of studying the behavior
of each individual gas molecule, Maxwell adopts a
statistical view and considers the average and distri-
bution for velocity and energy.

6  On the Kinetic Theory of Gases

James Clerk Maxwell

1872

A gaseous body is supposed to consist of a great number
of molecules moving with great velocity. During the greater
part of their course these molecules are not acted on by any
sensible force, and therefore move in straight lines with
uniform velocity. When two molecules come within a
certain distance of each other, a mutual action takes place
between them, which may be compared to the collision of
two billiard balls, Each molecule has its course changed,
and starts on a new path, I have concluded from some
experiments of my own that the collision between two hard

| spherical balls is not an accurate representation of what
takes place during the encounter of two molecules. A
better representation of such an encounter will be obtained

| by supposing the molecules to act on one another in a more

| gradual manner, so that the action between them goes on for
a finite time, during which the centres of the molecules first
approach each other and then separate,

We shall refer to this mutual action as an Encounter
between two molecules, and we shall call the course of a
molecule between one encounter and another the Free Path
of the molecule. In ordinary gases the free motion of a
molecule takes up much more time than that occupied by an
encounter. As the density of the gas increases, the free path
diminishes, and in liquids no part of the course of a molecule

i can be spoken of as its free path.
} In an encounter between two molecules we know that,
since the force of the impact acts between the two bodies,
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the motion of the centre of gravity of the two molecules
remains the same after the encounter as it was before. We
also know by the principle c€ the conservation of energy that
the velocity of each molecule relatively to the centre of
gravity remains the same in magnitude, and is only changed
in direction.

Let us next suppose a number of molecules in motion
contained in a vessel whose sides are such that if any
energy is communicated to the vessel by the encounters of
molecules against its sides, the vessel communicates as
much energy to other molecules during their encounters
with it, so as to preserve the total energy of the enclosed
system. The first thing we must notice about this moving
system is that even if all the molecules have the same velo-
city originally, their encounters will produce an inequality
of velocity, and that this distribution of velocity will go on
continually. Every molecule will then change both its
direction and its velocity at every encounter; and, as we
are not supposed to keep a record of the exact particulars
of every encounter, these changes of motion must appear to
us very irregular if we follow the course of a single molecule.
If, however, we adopt a statistical view of the system, and
distribute the molecules into groups, according to the
velocity with which at a given instant they happen to be
moving, we shall observe a regularity of a new kind in the
proportions of the whole number of molecules which fall into
each of these groups.

And here I wish to point out that, in adopting this
statistical method of considering the average number of
groups of molecules selected according to their velocities, we
have abandoned the strict kinetic method of tracing the
exact circumstances of each individual molecule in all its
encounters. It is therefore possible that we may arrive at
results which, though they fairly represent the facts as long
as we are supposed to deal with a gas in mass, would cease
to be applicable if our faculties and instruments were so
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sharpened that we could detect and lay hold of each mole
cule and trace it through all its course. s

For the same reason, a theory of the effects of education
deduced from a study of the returns of registrars, in which no
names of individuals are given, might be found not to be
applicable to the experience of a schoolmaster who is able
to trace the progress of each individual pupil.

The distribution of the molecules according to their veloci-
ties is found to be of exactly the same mathematical form a.
the distribution of observations according to the magnitude of
their errors, as described in the theory of errors of observation. .
The distribution of bullet-holes in a target according to their
distances from the point aimed at is found to be of the same
form, provided a great many shots are fired by persons of
the samc degree of skill.

We have already met with the same form in the case of
heat diffused from a hot stratum by conduction. Whenever
in physical phenomena some cause exists over which we
have no control, and which produces a scattering of the
patticles of matter, a deviation of observations from the truth,
or a diffusion of velocity or of heat, mathematical expressions
of this exponential form are sure to make their appearance.

It appears then that of the molecules composing the
system some are moving very slowly, a very few are moving
with enormous velocities, and the greater number with inter-
mediate velocities. To compare one such system with
another, the best method is to take the mean of the squares
of all the velocities. This quantity is called the Mean Square
of the velocity. The square root of this quantity is called
the Velocity of Mean Square.
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The Law of Disorder

George Gamow

1947

F YOU pour a glass of water and look at it, you will see a clear
uniform fluid with no trace of any internal structure or motion
in it whatsoever (provided, of course, you do not shake the glass).
We know, however, that the uniformity of water is only apparent
and that if the water is magnified a few million times, there will
be revealed a strongly expressed granular structure formed by a
large number of separate molecules closely packed together.
Under the same magnification it is also apparent that the water
is far from still, and that its molecules are in a state of violent
agitation meving around and pushing one another as though they
were people in a highly excited crowd. This irregular motion of
water molecules, or the molecules of any other material substance,
is known as heat (or theimal) motion, for the simple reason that
it is responsible for the phenomenon of heat. For, although
molecular motion as well as molecules themselves are not directly
discernible to the human eye, it is molecular motion that produces
a certain irritation in the nervous fibers of the human organism
and produces the sensation that we call heat. For those organisms
that are much smaller than human beings, such as, for example,
small bacteria suspended in a water drop, the effect of thermal
motion is much more pronounced, and these poor creatures are
incessantly kicked, pushed, and tossed around by the restless
molecules that attack them from all sides and give them no rest
(Figure 77). This amusing phenomenon, known as Brownian
motion, named after the English botanist Robert Brown, who first
noticed it more than a century ago in a study of tiny plant spores,
is of quite general nature and can be observed in the study of any
kind of sufficiently small particles suspended in any kind of
liquid, or of microscopic particles of smoke and dust floating
in the air.
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If we heat the liquid the wild dance of tiny particles suspended
in it becomes more violent; with cooling the intensity of the
motion noticeably subsides. This leaves no doubt that we are
actually watching here t! e effect of the hidden thermal motion
of matter, and that what we usually call temperature is nothing
else but a measurement of the degree of molecular agitation. By
st lying the dependence of Brownian motion on temperature,
it was found that at the temperature of —~273° C or —459° F,

Ficure 77

Six consecutive positions of a bacterium which is being tossed around by
molecular impacts (physically correct; bacteriologically not quite so).

thermal agitation of matter completely ceases, and all its mole-
cules come to rest. This apparently is the lowest temperature
and it has received the name of absolute zero. It would be an
absurdity to speak about still lower temperatures since apparently
there is no motion slower than absolute rest!

Near the absolute zero temperature the molecules of any sub-
stance have so little energy that the cohesive forces acting upon
them cement them together into one solid block, and all they
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can do is only quiver slightly in their frozen state. When the
temperature rises the quivering becomes more and more intense,
and at a certain stage our molecules obtain some freedom of
motion and are able to slide by one another. The rigidity of the
frozen substance disappears, and it becomes a fluid. The tem-
perature at which the melting process takes place depends on the
strength of the cohesive forces acting upon the molecules. In
some materials such as hydrogen, or a mixture of nitrogen and
oxygen which form atmospheric air, the cohesion of molecules
is very weak, and the thermal agitation breaks up the frozen
state at comparatively low temperatures. Thus hydrogen exists in
the frozen state only at temperatures below 14° abs (ie., below
—259° C), whereas solid oxygen and nitrogen melt at 55° abs
and 64° abs, respectively (ie. —218° C and —209° C). In other
substances the cohesion between molecules is stronger and they
remain solid up to higher temperatures: thus pure alcohol re-
mains frozen up to —130° C, whereas frozen water (ice) melts :
only at 0° C. Other substances remain solid up to much higher e
temperatures; a piece of lead will melt only at +327° C, iron at :
| +1535° C, and the rare metal known as osmium remains solid up
to the temperature of +2700° C. Although in the solid state of
matter the molecules are strongly bound to their places, it does
not mean at all that they are not affected by thermal agitation.
Indeed, according to the fundamental law of heat motion, the
amount of energy in every molecule is the same for all sub-
stances, solid, liquid, or gaseous at a given temperature, and the
difference lies only in the fact that whereas in some cases this
energy suffices to tear off the molecules from their fixed positions
! and let them travel around, in other cases they can only quiver
on the same spot as angry dogs restricted by short chains.

This thermal quivering or vibration of molecules forming a
solid body can be easily observed in the X-ray photographs de-
scribed in the previous chapter. We have seen indeed that, since
taking a picture of molecules in a crystal lattice requires a con-
siderable time, it is essential that they should not move away
from their fixed positions during the exposure. But a constant
quivering around the fixed position is not conducive to good
photography, and results in a somewhat blurred picture. This

:
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oxygen and nitrogen at —183° C and —196° C, alcohol at
+78° C, lead at +1620° C, iron at +3000° C and osmium only
above +5300° C

The breaking up of the beautiful crystalline structure of solid
bodies forces the molecules first to craw! around one another
like a pack of worms, and then to fly apart as though they were a
flock of frightened birds. But this latter phenomenon still does
not represent the limit of the destructive power of increasing
thermal motion. If the temperature rises still farther the very
existence of the molecules is threatened, since the ever increasing
violence of intermolecular collisions is capable of breaking them
up into separate atoms. This thermal dissociation, as it is called,
depends on the relative strength of the molecules subjected to it.
The molecules of some organic substances will break up into
separate atoms or atomic groups at temperatures as low as a few
hundred degrees. Other more sturdily built molecules, such as
those of water, will require a temperature of over a thousand
degrees to be destroyed. But when the temperature rises to
several thousand degrees no molecules will be left and the matter
will be a gaseous mixture of pure chemical elements,

This is the situation on the surface of our sun where the tem-
perature ranges up to 6000° C. On the other hand, in the com-
paratively cooler atmospheres of the red stars,2 some of the mole-
cules are still present, a fact that has been demonstrated by the
methods of spectral analysis,

The violence of thermal collisions at high temperatures not
only breaks up the molecules into their constituent atoms, but
also damages the atoms themselves by chipping off their outer
electrons. This thermal ionization becomes more and more pro-
nounced when the temperature rises into tens and hundreds of
thousands of degrezs, and reaches completion at a few million
degrees above zero. At these tremendously hot temperatures,
which are high above everything that we can produce in our
laboratories but which are common in the interiors of stars and
in particular inside our sun, the atoms as such cease to exist.
All electronic shells are completely stripped off, and the matter

1 All values given for atmospheric pressure.
% See Chapter XI.
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becomes a mixture of bare nuclei and free electrons rushing
wildly through space-and colliding with one another with tre-
mendous force. However, in spite of the complete wreckage of
atomic bodies, the matter still retains its fundamental chemical
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Ficure 79
The destructive effect of temperature.

characteristics, inasmuch as atomic nuclei remain intact. If the
temperature drops, the nuclei will recapture their electrons and
the integrity of atoms will be reestablishe.

In order to attain complete thermal dissociation of matter, that
is to break up the nuclei themselves into the separate nucleons
(protons and neutrons) the temperature must go up to at least
several billion degrees. Even inside the hottest stars we do not
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find such high temperatures, though it seems very likely that tem-
peratures of that magnitude did exist several billion years ago
when our universe was still young. We shall return to this exciting
question in the last chapter of this book.

Thus we see that the effect of thermal agitation is to destroy
step by step the elaborate architecture of matter based on the law
of quantum, and to turn this magnificent building into a mess of
widely moving particles rushing around and colliding with one
another without any apparent law or regularity.

2. HO¥ CAN ONE DESCRIBE DISORDERLY MOTION?

It would be, however, a grave mistake to think that because of
the irregularity of thermal motion it must remain outside the
scope of any possible physical description. Indeed the fact itself
that thermal motion is completely irregular makes it subject to a
new kind of law, the Law of Disorder better known as the Law of
Statisticcl Behavior. In order to understand the above statement
let us turn our attention to the famous problem of a “Drunkard’s
Walk.” Suppose we watch a drunkard who has been leaning
against a lamp post in the middle of a large paved city square
(nobody knows how or when he got there) and then has sud-
denly decided to go nowhere in particular. Thus off he goes,
making a few steps in one direction, then some more steps in an-
other, and so on and so on, changing his course every few steps
in an entirely unpredictable way (Figure 80). How far will be
our drunkard from the lamp post after he has executed, say, a
hundred phases of his irregular zigzag journey? One would at
first think that, because of the unpredictability of each turn, there
is no way of answering this question, If, however, we consider
the problem a little more attentively we will find that, although
we really cannot tell where the drunkard will be at the end of his
walk, we can answer the question about his most probable dis-
tance from the lamp post after a given large number of turns. In
order to approach this problem in a vigorous mathematical way
let us draw on the pavement two co-ordinate axes with the origin
in the lamp post; the X-axis coming toward us and the Y-axis to
the right. Let R be the distance of the drunkard from the lamp

"{\'k.:\‘l‘lﬁ’;’ :TL Lsrmf At e

13

-
o\ AE

SR

63




post after the total of N zigzags (14 in Figure 80). If now Xy and
Yy are the projections of the N** leg of the track on the corre-
sponding axis, the Pythagorean theorem gives us apparently:

R2=(X;+Xo+Xs: o +Xy) 2+ (Y1 + Yot Yoot - - - Yy)?

where X’s and Y's are positive or negative depending on whether
our drunkard was moving to or from the post in this particular

Ficure 80
Drunkard’s walk.

phase of his walk. Notice that since his motion is completely dis-
ordcrly, there will be about as many positive values of X’s and
Y’s as there are negative. In calculating the value of the square
of the terms in parentheses according to the elementary rules of
algebra, we have to multiply each term in the bracket by itself
and by each of all other terms.
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Thus:
(X1+X2+X3+“'XN)2
= (X1+X2+X3+ i 'XN) (X1+X2+X3+ °e 'XN)
=X2+ X1 Xo+ X1 Xs+ - - X2+ X1 Xo+ - - X2

This long sum will contain the square of all X’s (X2, Xz? -+ - Xa?),
and the so-called “nixed products” like X1 X2, X2Xs, etc.

So far it is simple arithmetic, but now comes the statistical point
based on the disorderliness of the drunkard’s walk. Since he was
moving entirely at random and would just as likely make a step
toward the post as away from it, the values of X’s have a fifty-fifty
chance of being either positive or negative. Consequently in
looking through the “mixed products” you are likely to find always
the pairs that have the same numerical value but opposite signs
thus canceling each other, and the larger the total number of
turns, the more likely it is that such a compensation takes place.
What will be left are only the squares of X’s, since the square is
always positive. Thus the whole thing can be writ>n as
X2 +Xy2+ -+ - -Xy®=N X2 where X is the average length of the
projection of a zigzag link on the X-axis.

In the same way we find that the second bracket containing
Y’s can be reduced to: NY?, Y being the average projection of the
link on the Y-axis. It must be again repeated here that what
we have just done is not strictly an algebraic operation, but is
based on the statistical argument concerning the mutual cancel-
lation of “mixed products” because of the random nature of the
pass. For the most probable distance of our drunkard from the
lamp post we get now simply:

R*=N (X%2+Y?)
R=\/N-\/X2+1?

But the average projections of the link on both axes is simply
a 45° projection, so that \/X2+Y? right is (again because of the
Pythagorean theorem) simply equal to the average length of the
link. Denoting it by 1 we get:
R=1-v/N

In plain words our result means: the most probable distance of
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diffusion is a rather slow process; when you put a lump of sugar
into your cup of tea you had better stir it rather than wait until
the sugar molecules have been spread throughout by their own
motion. )

Just to give another example of the process of diffusion, which
is one of the most important processes in molecular physics, let
us consider the way in which heat is propagated through an iron
poker, one end of which you put into the fireplace. From your
own experience you know that it takes quite a long time until
the other end of the poker becomes uncomfortably hot, but you
probably do not know that the heat is carried along the metal
stick by the process of diffusion of electrons. Yes, an ordinary
iron poker is actually stuffed with electrons, and so is any metallic
object. The difference between a metal, and other materials, as
for example glass, is that the atoms of the former lose some of
their outer electrons, which roam all through the metallic lattice,
being involved in irregular thermal motion, in very much the
same way as the particles of ordinary gas. :

The surface forces on the outer boundaries of a piece of metal
prevent these electrons from getting out,® but in their motion

| inside the .naterial they are almost perfectly free. If an electric
force is applied to a metal wire, the free unattached electrons
will rush headlong in the direction of the force producing the

| phenomenon of electric current. The nonmetals on the other hand
are usually good insulators because all their electrons are bound
to be atoms and thus cannot move freely.

When one end of a metal bar is placed in the fire, the thermal
motion of free electrons in this part of the metal is considerably
increased, and the fast-moving electrons begin to diffuse into the
other regions carrying with them the extra energy of heat. The
process is quite similar to the diffusion of dye molecules through

. water, except that instead of having two different kinds of par-
ticles (water molecules and dye molecules) we have here the
diffusion of hot electron gas into the region occupied by cold
electron gas. The drunkard’s walk law applies here, however, just

3 When we bring a metal wire to a high temperature, the thermal motion
of electrons in its inside becomes more violent and some of them come out
through the surface. This is the phenomenon used in electron tubes and
familiar to all radio amateurs.

B
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as well and the distances through which the heat propagates
along a metal bar increase as the square roots of corresponding
times.

As our last example of diffusion we shall take an entirely dif-
ferent case of cosmic importance. As we shall learn in the fol-
lowing chapters the energy of our sun is produced deep in its
interior by the alchemic transformation of chemical elements.
This energy is liberated in the form of intensive radiation, and
the “particles of light,” or the light quanta begin their long jour-
ney through the body of the sun towards its surface. Since light
moves at a speed of 300,000 km per second, and the radius of
the sun is only 700,000 km it would take a light quantum only
slightly over two seconds to come out provided it move I without
any deviations from a straight line. However, this is far from being
the case; on their way out the li b quanta undergo innumerable
collisions with the atoms and electrons in the material of the sun.
The free pass of a light quantum in solar matter is about a centi-
meter (much longer than a free pass of a molecule!) and since
the radius of the sun is 70,000,000,000 cm, our light quantum must
make (7-10%°)2 or 5-10% drunkard’s steps to reach the surface.

Since each step requires or 3:10- sec, the entire time of

1
3-101
travel is 8- 10-°x5- 1021 =1.5- 102 sec or about 200,000 yr! Here
again we see how slow the process of diffusion is. It takes light
2000 centuries to travel from the center of the sun to its surface,
whereas after coming into empty intraplanetary space and
traveling along a straight line it covers the entire distance from
the sun to the earth in only eight minutes!

3. COUNTING PROBABILITIES

This case of diffusion represents only one simple example of
the application of the statistical law of probability to th: problem
of molecular motion. Before we go farther with that discussion,
and make the attempt to understand the all-important Law of
Entropy, which rules the thermal behavior of every material
body, be it a tiny droplet of some liquid or the giant universe of
stars, we have first to learn more about the ways in which the
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probability of different simple or complicated events can be cal-
culated.

By far the simplest problem of probability calculus arises when
you toss a coin. Everybody knows that in this case (without
cheating) there are equal chances to get heads or tails. One
usually says that there is a fifty-fifty chance for heads or tails,
but it is more customary in mathematics to say that the chances
are half and half. If you add the chances of getting heads and
getting tails you get $+3=1. Unity in the theory of probability
means a certainty; you are in fact quite certain that in tossing a

!

i

Ficure 83 !

Four possible combinations in tossing two coins. i

coin you get either heads or tails, unless it rolls under the sofa and
vanishes tracelessly. :
Suppose now you drop the coin twice in succession or, what is

the same, you drop 2 coins simultaneously. It is easy to see that
you have here 4 different possibilities shown in Figure 83,

In the first case you get heads twice, in the last case tails
twice, whereas the two intermediate cases lead to the same
result since it does not matter to you in which order (or in which
coin) heads or tails appear. Thus you say that the chances of
getting heads twice are 1 out of 4 or } the chances of getting
tails twice are also 4, whereas the chances of heads once and tails
once are 2 out of 4 or 3. Here again 4 +1+$=1 meaning that you
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Ficure 78

e

are certain to get one of the 3 possible’combinations, Let us see
now what happens if we toss the coin 3 times. There are altogether
8 possibilities summarized in the following table:

First tossing h|h|h|h| t]t]¢t]?t
Second h|h t t | h|h t t
Third h{t}]nh t | h t | h t

I II I I II III @01 IV

If you inspect this table you find that there is 1 chance out of 8
of getting heads three times, and the same of getting tails three
times. The remaining possibilities are equally divided between
heads twice and tails once, or heads once and tails twice, with
the probability three eighths for each event.

Our table of different possibilities is growing rather rapidly,
but let us take one more step by tossing 4 times. Now we have
the following 18 possibilities:

Firsttossinghhhhhhhhttttt’ttt
Second hlhfh|h|t]t]t|t|(h{h]h|h|{t|{t]+]t
Third hih|t|t|h|b|[t|t|h|h|t|{etlnin, |t
Fourth’hththththththltht

I IT ITII OD INDOODIV I IMIITIVIILIVIV V

Here wve have +y for the probability of heads four times, and
exactly the same for tails four times, The mixed cases of heads
three times and tails once or tailc threa #imoe and hoade anna




substance.

After solid material melts, the molecules still remain together,
since the thermal agitation, though strong enough to dislocate
them from the fixed position in the crystalline lattice, is not yet
sufficient to take them completely apart. At still higher tem-
peratures, however, the cohesive forces are not able to hold the
molecules together any more and they fly apart in all directions
unless prevented from doing so by the surrounding walls. When
this happens, of course, the result is matter in a gaseous state.
As in the melting of a solid, the evaporation of liquids takes place .
at different temperatures for different materials, and the sub-
stances with a weaker internal cohesion will turn into vapor at
lower temperatures than those in which cohesive forces are
stronger. In this case the process also depends rather essentially
on the pressure under which the liquid is kept, since the outside
pressure evidently helps the cohesive forces to keep the molecules
together. Thus, as everybody knows, water in a tightly closed
kettle boils at a lower temperature than will water in an open one.
On the other hand, on the top of high mcuntains, where atmos-
pheric pressure is considerably less, water will boil well below
100° C. It may be mentioned here that by measuring the tem-
perature at which water will boil, one can calculate atmospheric
pressure and consequently the distance above sea level of a given
location. .

But do not follow the example of Mark Twain who, according
to his story, once decided to put an aneroid barometer into a
boiling kettle of pea soup. This will not give you any idea of the
elevation, and the copper oxide will make the soup taste bad.

The higher the melting point of a substance, the higher js its
boiling point. Thus liquid hydrogen boils at —253° C, liquid
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the probability of getting heads three or four times in succession
is the product of probabilities of getting it separately in each
tossing (3=34x3x3; fs=4x34Xx3x4). Thus if somebody asks
you what the chances are of getting heads each time in ten toss-
ings you can easily give the answer by multiplying 4 by % ten
times. The result will be .00098, indicating that the chances are
very low indeed: about one chance out of a thousand! Here we
} . have the rule of “multiplication of probabilities,” which states
that if you want several different things, you may determine the

‘ mathematical probability of getting them by multiplying the
mathematical probabilities of getting tne several individual ones.
If there are many things you want, and each of them is not par-
ticularly probable, the chances that you get them all are dis-
couragingly low!

There is also another rule, that of the “addition of probabilities,”
which states that if you want only one of several things (no matter
which one), the mathematical probability of getting it is the sum
of mathematical probabilities of getting individual items on your
list.

This can be easily illustrated in the example of getting an equal
division between heads and tails in tossing a coin twice. What
you actually want here is either “heads once, tails twice” or “tails
twice, heads once.” The probability of each of the above com-
binations is 4, and the probability of getting either one of them
is 3 plus 4 or 4. Thus: If you want “that, and that, and that . . .”
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three, four, ten, and a hundred tossings. You see that with the
increasing number of tossings the probability curve becomes

sharper and sharper and the maximum at fty-fifty ratio of heads
and tails becomes more and more pronounced.

Thus whereas for 2 or 8, or even 4 tosses, the chances to have
heads each time or tails each time are stili quite appreciable, in
10 tosses even 90 per cent of heads or tails is very improbable.
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Ficure 84
Relative number of tails and heads.

For a still larger number of tosses, say 100 or 1000, the probability
curve becomes as sharp as a needle, and the chances of getting
even a small deviation from fifty-fifty distribution becomes prac-
tically nil,

Let us now use the simple rules of probability calculus that we
have just learned in order to judge the relative probabilities of
various combinations of five playing cards which one encounters
in the well-known game of poker.
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In case you do not know, each player in this game is dealt
5 cards and the one who gets the highest combination takes the
bank. We shall omit here the additional complications arising

-from the possibility of exchanging some of your cards with the

hope of getting better ones, and the psychological strategy of
bluffing your opponents into submission by making them believe
that you have much better cards than you actually have. Although
this bluffing actually is the heart of the game, and once led the
famous Danish physicist Niels Bohr to propose an entirely new
type of game in which no cards are used, and the players simply
bluff one another by talking about the imaginary combinations
they have, it lies entirely outside the domain of probability
calculus, being a purely psychological matter.

Ficure 85
A flush (of spades).

In order to get some exercise in probability calculus, let us
calculate the probabilities of some of the combinations in the
game of poker. One of these combinations is called a “fush” and
zepresents 5 cards all of the same suit (Figure 85).

If you want to get a flush it is immaterial what the first card
you get is, and one has only to calculate the chances that the
other four will be of the same suit. There are altogether 52 cards
in the pack, 13 cards of each suit,* so that after you get your first
card, there remain in the pack 12 cards of the same suit. Thus
the chances that your second card will be of the proper suit are
12/51. Similarly the chances that the third, fourth, and fifth cards

*We omit here the complications arising from the presence of the “joker,”
an extra card which can be substituted for any other card according to the
desire of the player.




pairs, with coinciding birthdays. A< a matter of fact, there are
more chances thai there is such a coincidence than that there is not.

You can verify that fact by making a birthday list including
about 21 persons, or more simply, by comparing the birth dates
of 24 persons whose names appear consecutively on any pages of
some such reference book as “Who’s Who in America,” opened
at random. Or the probabilities can be ascertained by using the
simple rules of probability calculus with which we have become
acquainted in the problems of coin tossing and poker.

Suppose we try first to calculate the chances that in a company
of twenty-four persons everyone has a different birth date. Let
us ask the first person in the group what is his birth -late; of
course this can be any of the 865 days of the year. Now, what is
the chance that the birth date of th second person we approach
is different from that of the first? Since this (second) person
could have been born on any day cf the year, there is one chance
out of 365 that his birth date coincides with that of the first one,
and 364 chances out of 365 (i.e., the probability of 364/365) that
it does not. Sir.uarly, the probability that the third person has a
birth date ddferent from that of either the first or second is
363/365, siice two days of the year have been excluded. The
probabilities that ta: next persons we ask have different birth
dates from the ones we have approached before are then: 362, ‘335,
361/365, 360/365 and so on up to the last persou for whom the

. (365-28) 842
probabxht; 18 Tes— or -3—6-5-.

Since we are trying to learn what the probability is that one of
these coincidences of birth dates exists, we have to multiply all
the above fractions, thus obtaining fc. the probability of all the
persor.~ having different birth dates the value:

864x363x862 L8

365365365 365 -

One can arrive at the product in a few minutes by using cer-
tain methods of higher mathematics, but if you don’t know them
you can do it the hard way by direct multiplication which
would not take s0 very much time. The result is 0.46, indicating

# Use a logarithmic table or slide rule if you can!




£)

that the probability that there will be.no coinciding birthdays
is slightly less than one half. In other words there are only 46
chances in 100 that no two of your two dozen friends will have
birthdays on the same day, and 54 chances in 100 that two or
more will. Thus if you have 25 or more friends, and have never
been invited to two birthday parties on the same date you may
conclude with a high degree of probability that either most of
your friends do not organize their birthday parties, or that they
do not invite you to them!

The problem of coincident birthdays represents a very fine
example of how a common-sense judgment concerning the
probabilities of complex events can be entirely wrong. The
author has put this question to a great many people, including
many prominent scientists, and in all cases except one® was
offered bets ranging from 2 to 1 to 15 to 1 that no such co-
incidence will occur. If he had accepted all these bets he would
be a rich man by ncwl

It cannot be repear:d too often that if we calculate the
probabilities of different events according to the given rules and
pick out the most probable of them, we are not at all sure that
this is exactly what is going to happen. Unless the number of
tests we are making runs into thousands, millions or still better
into billions, the predicted results are only “likely” and not at all
“certain.” This slackening of the laws of probability when dealing
with a comparatively small number of tests limits, for example,
the usefulness of statistical analysis for deciphering various code:
and cryptograms which are limited only to comparatively short
notes. Let us examine, for example, the famcus case described
by Edgar Allan Poe in his well-known story “The Gold Bug.”
He tells us about a certain Mr, Legrand who, strolling along a
deserted beach in Sorith Carolina, picked up a piece of parchment
half buried in the wet sand. When subjected to the warmth of
the fire burning gzily in Mr. Legrand’s beach hut, the parchment
revealed some mysterious signs written in ink which was invisible
when cold, but which turned red and was quite legible when
heated. There was a picture of a skull, suggesting that the docu-

8 This exception was, of course, a Hungarian mathematician (see the
beginning of the first chapter of this book).
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yards, it he had not turned, but had gone straignt, he would be a
hundred yards away—which shows that it is definitely advan-
tageous to be sober when taking a walk.

Ficure 81
Statistical distribution of six walking drunkards around the lamp post.

The statistical nature of the above example is revealed by the
fact that we refer here only to the most probable distance and not
to the exact distance in each individual case. In the case of an
individual drunkard it may happex, though this is not very prob-
able, that he does not make any turns at all and thus goes far
away from the lamp post along the straight line. It may also
happen, that he turns each time by, say, 180 degrees thus re-
turning to the lamp post after every second turn. But if a large
nu nber of drunkards all start from the same lamp post walking
in different zigzag paths and not interfering with one another

ment was written by a pirate, the head of a goat, proving beyond
any doubt that the pirate was none other than the famous Captain
Kidd, and several lines of typographical sigus apparently indi-
cating the whereabouts of a hidden treasure (see Figure 87).

We take it on the authority of Edgar Allan . - that the pirates
of the seventeenth century were acquainted with such typo-
graphical signs as semicolons and quotation marks, and such
others as: {, +,and {.

Being in need of money, Mr. Legrand used all his mental
powers in an attempt to decipher the mysterious cryptogram and

Y 53 :’.t30S))G'i‘l”‘)ﬂ);W‘;nrsuo)‘&s‘; 11G:3
*8183(095* i (86"%72;8) 1 (14es)5 % 9.4 1 Gy9
S6*2 (S*-4)818%4069285); )618)4%3 51 (19; 40
8);8:8%154818554)435 152880681 (£9;98 5

G8;4Q200,40)42 116152 1033 % <i\b,
.
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and tne larger the numuer o turns they make in e disolaciiy
walk, the more accurate is the rule.

Now substitute for the drunkards some microscopic bodies such
as plant spores or bacteria suspended in liquid, and you will have
exactly the picture that the botanist Brown saw in his microscope.
True the spores and bacteria are not drunk, but, as we have said
above, they are being incessantly kicked in all possible directions
by the surrounding molecules involved in thermal motion, and
are therefore forced to follow exactly the same irregular zigzag
trajectories as a person who has completely lost his sense of
direction under the influence of alcohol.

If you look through a micioscope at the Brownian motion of a
large number of small particles suspended in a drop of water,
you will concentrate your attention on a certain groun, of them
that are at the moment concentrated in a given small region (near
the “la.up post”). You will notice that in the course of time they
become gradually dispersed all over the field of vision, and that
their average distance from the origin increases in proportion
to the square root of the time interval as required by the mathe-
matical law by which we calculated the distance of the drunkard’s
walk.

The same law of motion pertains, of course, to each separate
molecule in our drop of water; but you cannot see separate mole-
cules, and even if you could, you wouldn't be able to distinguish
between them. To make such motion visible one must use two
different kinds of molecules distinguishable for example by their
different colors. Thus we can fill one half of a chemical test tube
with a water solution of potassium permanganate, which will give
to the water a beautiful purple tint. If we now pour on the top
of it some clear fresh water, being careful not to mix up the two
layers, we shall notice that the color gradually penets =8 the
clear water. If you wait sufficiently long you will find that all the
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probable and not at all certain. In fact if the secret message had
been “You will find a lot of gold and coins in an iton box in woods
two thousand yards south from an old hut on Bird Island’s north
tip” it would not have contained a single “e”! But the laws of
chance were favorable to Mr, Legrand, and his guess was really
correct.

Having met with success in the first step, Mr. Legrand became
overconfident and proceeded in the same way by picking up the
letters in the order of the probability of their occurrence. In the
following table we give the symbols appearing in Captain Kidd’s
message in the order of their relative frequency of use:

Of the character 8 there are 33 eé—i—>e
26 Ay t
O | o8 |
-16 iR \7 0
16 d k\('\(_zr
13 hAY X5n

12 n<«X\Va
11 r¥/ N\Yi
8| s/ | vd
8 tv

| v =] O U k||| |-

0n



Sapily AR Attt Wi SRR alt patkea lather ugntly (in con-
trast to the arrangement of those in a gas) the average free path
of each molecule between two successive collisions. is very short,
being only about one hundred millionths of an inch. Since on
the other hand the molecules at room temperature move with the
speed of about one tenth of a mile per second, it takes only one
million-millionth part of a second for a molecule to go from
one collision to another. Thus in the course of a single second

Ficure 82

each dye molecule will be engaged in about a million million
consecutive collisions and will change its direction of motion as
many times. The average distance covered during the first second
will be one hundred millionth of an inch (the length of free path)
times the square root of a million millions. This gives the average
diffusion speed of only one hundredth of an inch per second; a
rather slow progress considering that if it were not deflected by
collisions, the same molecule would be a tenth of a mile away!
If you wait 100 sec, the molecule will have struggled through
10 times (v/100=10) as great distance, and in 10,000 sec, that
is, in about 8 hr, the diffusion will have carried the coloring
100 times farther (v/10000=100), that is, about 1 in. away. Yes,

English language. Therefore it was logical to assume that the
signs listed in the broad column to the left stood for the letters
listed opposite them in the first narrow column to the right. But
using this arrangement we find that the beginning of Captain
Kidd's message reads: ngiisgunddrhaoecr . .

No sense at alll .

What happened? Was the old pirate so tricky as to use special
words that do not contain letters that follow the same rules of
frequency as those in the words normally used in the English
language? Not at all; it is simply that the text of the message is
not long enough for gocd statistical sampling and the most prob-
able distribution of letters does not occur. Had Captain Kidd
hidden his treasure in such an elaborate way that the instrvctions
for its recovery occupied a couple of pages, o, still better an
entire volume, Mr. Legrand would have had a much better
chance to solve the riddle by applying the rules of frequency.

If you drop a coin 100 times you :aay be pretty sure that it will
fall with the head up about 50 times, but in only 4 drops you
may have heads three times and tails once or vice versa. To make
a rule of it, the larger the number of trials, the more accurately
the laws of probability operate.

Since the simple method of statistical analysis failed because
of an insufficient number of letters in the cryptogram, Mr. Le- -
grand had to use an analysis based on the detailed structure of

differant warde in tha Fnalich lanmacs Tivet Al all a ctencmsle
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degrees and thirteen minutes northeast by north. Main branch
seventh limb east side. Shoot from the left eye of the death’s
head. A bee-line from the tree through the shot fifty feet out.”

The correct meaning of the ditlerent characters as finally de-
ciphered by Mr. Legrand is shown in the second column of the
table on page 217, and you see that they do not correspond exactly
to the distribution that might reasonably be expected on the
basis of the laws of probability. It is, of course, because the text
is too short and therefore does not furnish an ample opportunity

Ficure 88

for the laws of probability to operate. But even in this small
“statistical sample” we can notice the ondency for the letters
to arrange themselves in the order required by the theory of
probability, a tendency that would become almost an unbreak-
able rule if the number of letters in the message were much
larger.

There seems to be only one example (excepting the fact that
insurance companies do not break up) in which the predictions
of the theory of probability have actua'y been chccked by a
very large number of trials. This is a famous problem of the
American flag and a box of kitchen matches.
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To tackle this particular problem of probability you will need
an American flag, that is, the part of it consisting of red and
white stripes; if no flag is available just take a large piece of
paper and draw on it a number of parallel and equidistant lines.
Then you need a box of matches—any kind of matches, provided
they are shorter than the width of the stripes. Next you will need
a Greek pi, which is not something to eat, Lut just a letter of the
Greek alphabet equivalent to our “p.” It looks like this: . In
addition to being a letter of the Greek alphabet, it is used to

& INCHES
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INTERSECT

INTERSECTS

Arc x
Ficure 89

signify the ratio of the circumference of a circle to its diameter.
Vou may know that numerically it equals 8.1415926535 . . .
(many more digite are known, but we shall not need them all.)

Now spread the flag on a table, toss a match in the air and
watch it fall on the flag (Figure 88). It may fall in such a way
that it all remains within one stripe, or it may fall across the
boundary between two stripes. What are the chances that one or
another will take place? -

Following our procedure. in ascertaining other probabilities,

S
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we must first count the number of cases that correspond to one
or another possibility.

But how can you count all the possibilities when it is clear
that a match can fall on a flag in au infinite number of different
ways?

Let us examine the question a little more closely. The position
of the fallen match in respect to the stripe on which it falls
can be characterized by the distance of the middle of the match
from the nearest boundary. line, and by the angle that the match
forms with the direction of the stripes in Figure 89. We give
three typical examples of fallen matches, assuming, for the sake
of simplicity, that the length of the match equals the width of
the stripe, each being, say, two inches. If the center of the match
is rather close to the boundary line, and the angle is rather large
(as in case a) the match will intersect the line. If, on the con-
trary, the angle is small (as in case b) or the distance is large
(as in case ¢) the match will remain within the boundaries of
one stripe. More exactly we may say that the match will intersect
the line if the projection of the half-of-the-match on the vertical
direction is larger than the half width of the stripe (as in case a),
and that no intersection will take place if the opposite is true
(as in case b). The above statement is represented graphically
on the diagram in the lower part of the picture. We plot on the
horizontal axis (abscissa) the angle of the fallen match as given
by the length of the corresponding arc of radius 1. On the vertical
axis (ordinate) we plot the length of the projection of the half-
match length on the vertical direction; in trigeriometry this length
is knowr as the sinus corresponding to the given arc. Jt is clear
that the sinus is zero when the arc is zero since in that case the
match occupies a horizontal position. When the arc is 4 =, which
corresponds to a straight angle7 the sinus is equal to unity,
since the match occupies a vertical position and thus coincides
vith its projection. For intermediate values of the arc the sinus
is given by the familiar mathematical wavy curve known as
sinusoid. (In Figure 89 we have oniy one quarter of a complete
wave in the interval between 0 and =/2.)

?The circumference of a circle with the radius 1 is » umes its diameter
or 2 . Thus the length of one quadrant of # circle is 2 /4 or /2.
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Having constructed this diagram we can use it with con-
venience for estimating the chances that the fallen match will or
will not cross the line. In fact, as we have seen above (look again
at the three examples in the upper part of Figure 89) the match
will cross the boundary line of a stripe if the distance of the
center of the match from the boundary line is less than the cor-
responding projection, that is, less than the sinus of the arc.
That means that in plotting that distance and that arc in our
diagram we get a point below the sinus line. On the contrary
the match that falls entirely within the boundaries of a stripe
wiil give a point above the sinus line.

Thus, according to our rules for calcu]ating probabilities, the
chances of intersection will stand in the same ratio to the
chances of nonintersection as the area below the curve does to
the area above it; or the probabilities of the two events may be
calculated by dividing the two areas by the entire area of the
rectangle. It can be proved mathematically (cf. Chapter I1) that
the area of the sinusoid presented in our diagram equals exactly

L Since the total area of the rectangle is %x1=72-: we find the

probability that the match will fall across the boundary (for

matches equal in length to the stripe width) is: —1-=g.

T, k3

The interesting fact that = pops up here where it might be
least expecicd was first observed by the eighteenth century
scientist Count Buffon, and so the match-and-stripes problem now
bears his name,

An actual experiment was carried out by a diligant Italian
mathematician, Lazzerini, who made 3408 match tosses and ob-
served that 2169 of them intersected the boundary line. The
exact record of this experiment, checked with the Buffon formula,
22 or 81415929, diffeing from
the exact mathematical value only in the seventh decimal placel

This represents, of course, a most amusing proof of the validity
of the probability laws, but not more amusing than the deter-
mination of a number “2” by tossing a coin several thousand

substitutes for = a value of




times and dividing the total number of tosses by the number
of times heads come up. Surc enough you get in this case:
2.000000 . . . with just as small an error as in Lazzerini’s deter-
mination of .

4. THE “MYSTERIOUS” ENTROPY

From the above examples of probability calculus, all of them
pertaining to crdinary life, we have learned that predictions of
that sort, being often disappointing when small numbers are in-
volved, become better and better when we go to really large
numbers. This makes these laws particularly applicable to the
description of the almost innumerable quantities of atoms or
molecules that form even the smallest piece of matter we can
conveniently handle. Thus, whereas the statistical law of Drunk-
ard’s Walk can give us only approximate results when applied
to a half-dozen drunkards who make perhaps two dozen turns
each, its application to billions of dye molecules -ndergoing
billions of collisions every second leads to the most rigorous
physical law of diffusion. We can also sav that the dye that was
originally dissolved in only one half of the water in the test tube
tends through the process of diffusion to spread uniformly
through the entire liquid, because, such uniform distribution is
more probable than the original onc.

For exactly the same reason the room in which you sit reading
this book is filled uniformly by air from wali to wall and from
floor to ceiling, and it never even occurs to you that the air in the
room can unexpectedly collect itself in a far corner, leaving you to
suffocate in your chair. However, this horrijying event is not at
all physically impossible, but only highly improbable.

To clarify the situation, let us consider a room divided into
two equal halves by an imaginary vertical plane, and ask our-
selves about the most probable  istribution of air molecules be-
tween the two parts. The problem is of course identical with the
coin-tossing problem discussed in the previous chapter. If we
pick up one single molecule it has equal chances of being in the
right or in the left half of the room, in exactly the same way as
the tossed coin can fall on the table with heads or tails up.

The Law of Disorder
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The second, the third, and all the other molecules also have
equal chances of being in the right or in the left part of the room
regardless of where the othérs are.® Thus the prohlem of dis-
tributing molecules between the two halves of the room is
equivalent to the problem of heads-and-tails distribution in a
large number of tosses, and as you have seen from Figure 84,
the fifty-fifty distribution is in this case by far the most probable
one. We also see from that figure that with the increasing number
of tosses (the number of air molecules in our case) the prob-
ability at 50 per cent becomes greater and greater, turning prac-
tically into a certainty when this number becomes very large.
Since in the average-size room there are about 102 molecules,?
the probability that all of them collect simultaneously in, let us
say, the right part of the room is:

(%)10”510-3-10'
ie., 1 out of 10310

On the other hand, since the molecules of air moving at
the speed of about 0.5 km per second require only 0.01 sec
to move from one end of the room to the other, their dis-
tribution in the room will be reshuffled 100 times each second.
Consequently the waiting time for the right combination is
10299,999,999,999,899,999,999,909,998 sec as oompared with Only 1017 sec
representing the total age of the universe! Thus you may go on
quietly reading your book without being afraid of being suf-
focated by chance,

To take another exampl:, let u- cmsider a glass of water
standing on the table. We know that the molecules of water,
being involved in the irregular thermal motion, are moving at
high speed in all possible directions, being, however, prevented
from flying apart by the sohesive forces hetween them.

Since the direction of motion of each separate molecule is

®In fact, owing to large distances between separate molecules of the gas,
the space is not at all crowded and the a?resence of a large number of
molecnles in a given volume does nct at all prevent the entrance of new
molecuies.

¥ A reom 10 ft by 15 ft, with a 9 ft ceiling has a volume of 1350 cu ft, or
5:10" cu cm, thus containing 5-10¢ g of air. Since the average mass of air
molecules is 3:1:66X10-%=5Xx10"" g, the total number of molecules s
5:10%/5-10""=10""". (=< means: approximately equal to.)
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governed entirely by the law of chance, we may consider the
possibility that at a certain moment the velocities of one half
of the molecules, namely those in the upper part of the glass,
will all be directed upward, “vhereas the other half, in the lower
part of the glass, will move downwards.!® In such a case, the co-
hesive forces acting along the horizontal plane dividing two
groups of molecules will not be able to oppose their “unified
desire for parting,” and we shall observe the unusual physical
phenomenon of half the water from the glass being spontaneously
shot up with the speed of a bullet toward the ceiling!

Another possibility is that the total energy of thermal motion
of water molecules will be concentrated by chance in those
located in the upper part of the glass, in which case the water
near the bottom suddenly freezes, whereas its upper layers begin
to boil violently. Why have you never seen such things happen?
Not because they are absolutely impossible, but only because
they are extremely improbable. In fact, if you try to calculate
the probability that molecular velocities, originally distributed
at random in all directions, will by pure chaace assume the dis-
tribution described above, you arrive at a figure that is just about
as small as the probability that the molecules of air will collect
in one corner. In a similar way, the chance that, because of
mutual collisions, some of the molecules will lose most of their
kinetic energy, while the other part gets a considersble excess
of it, is also negligibly small. Here again the distribution of
velocities that corresponds to the usually observed case is the
one that possesses the largest probability.

If now we start with a case that does not correspond to the
most probable arrangement of molecular positions or velocities,
by letting out some gas in one corner of the room, or by pouring
some hot water on top of the cold, a sequence of physical
changes will take place that will bring our system from this less
probable to a most probable state. The gas will diffuse through
the room until it fills it up uniformly, and the heat from the top
of the glass will flow toward the bottora until all the water as-

1We must consider this half-and-half distribution, since the possibility
that all molecules move in the same direction is ruled out by the mechanical
law of the conservation of momentum,
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But please do not think that in 500 hands you are sure to geta
flush. You may get none, or you may get two. This is only prob-
ability calculus, and it may happen that you will be dealt many
more than 500 hands without getting the desired combination, or
on the contrary that you may be dealt a flush the very first time
you have the cards in your hands. All that the theory of prob-

Ficure 86
Full house.

ability can tell you is that you will probably be dealt 1 flush in 500
hands. You may also learn, b following the same methods of
calculation, that in playing 30,000,000 games you will probably
get 5 aces (including the joker) about ten times.

Another combination in poker, which is even rarer and there-
fore more valuable, is the so-called “full hand,” more popularly
called “full house.” A full house consists of a “pair” and “three of
a kind” (that is, 2 cards of the same value in 2 suits, and 3 cards
of the same value in 8 suits—as, for example, the 2 fives and
3 queens shown in Figure 86).

If you want to get a full house, it is immaterial which 2 cards
you get first, but when you get them you must have 2 of the re-
maining 3 cards match one of them, and the other match the
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sumes an equal temperature. Thus we may say that all physical
processes depending on the irregular motion of molecules go in
the dicection of increasing probability, and the state of equilib-
rium, when nothing more Fappens, corresponds to the maximum
of probability. Since, as we have seen from the example of the
air in the room, the probabilities of various molecular distribu-
tions are often expressed by inconveniently small numbers (as
10319 for the air collecting in one half of the room), it is cus-
tomary to refer to their logarithms instead, This quantity is known
by the name of entropy, and plays a prominent role in all ques-
tions connected with the irregular thermal motion of matter. The
foregoing statement concerning the probability changes in
physical processes can be now rewritten in the form: Any spon-
taneous changes in a physical system occur in the direction of
increasing entropy, and the final state of equilibrium corresponds
to the maximum possible value of the entropy.

This is the famous Law of Entropy, also known as the Second
Law of Thermodynamics (the First Law béing the Law of Con-
servation of Energy), and as you see there is nothing in it to
frighten you,

The Law of Entropy can also be called the Law of Increasing
Disorder since, as we have seen in all the examples given above,
the entropy reaches its maximum when the position and velocities

of molecules are distributed completely at random so that any
attemnt 10 inkrahiine cama ardor tn thate senbine seomeeld 1ol an




is 4/48. Thus the total probability of a full house is:

X
50 49 48 117600

or about one half of the probability of the flush.

In a similar way one can calculate the probabilities of other
combinations as, for example, a “straight” (a sequence of cards),
and also take into account the changes in probability introduced
by the presence of the joker and the possibility of exchanging
the originally dealt car Is.

By such calculations orie finds that the sequence of seniority
used in poker does really correspond to the order of mathematica; ‘
probabilities. It is not known by the author whether such an
arrengement was proposed by some mathematician of the old
times, or was established purely empirically by millions of
players risking their money in fashionable gambling salons and
little dark haunts all over the world. If the latter was the case,
we must admit that we have here a pretty good statistical study
of the relative probabilities of complicated events!

Another interesting example of probability calculation, an ex-
ample that leads to a quite unexpected answer, is the problem of
“Coinciding Birthdays.” Try to remember whether you have ever
been invited fo two different birthday parties on the same day.
You will probably say that the chances of such double invitations
are very small since you have only about 24 friends who are
likely to invite you, and there are 365 days in the year on which
their birthdays may fall. Thus, with so many possible dates to
choose from, there must be very little chance that any 2 of ycur
24 friends will have to cut their birthday cakes on the same day.

However, unbelievable as it may sound, your judgment here is
quite wrong. The truth is that there is a rather high probability
that in a company of 24 people there are a pair, or even several
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(for example, through friction), the heat energy can never go
completely into mechanical motion, This rules out the possibility
of the so-called “perpetual motion motor of the second kind,”1*
which would extract the heat from the material bodies at normal
temperature, thus cooling them down and utilizing for doing
mechanical work the energy so obtained. For example, it is im-
possible to build a steaniship in the boiler of which steam is
generated not by burning coal but by extracting the heat from the
ocean water, which is first pumped into the engine room, and
then thrown back overboard in the form of ice cubes after the
heat is extracted from it.

But how then do the ordinary steam-engines turn the heat
into motion without violating the Law of Entropyt The trick is
made possible by the fact that in the steam engine only a part of

- the heat liberated by burning fuel is actually turned into energy,
another larger part being thrown out into the air in the form of
exhaust steam, or absorbed by the specially arranged steam
coolers. In this case we have two opposite changes of entropy
in our system: (1) the increase of entropy corresponding to the
transformation of a part of the heat into mechanical energy of
the pistons, and (2) the decrease of entropy resulting from the
flow of another part of the heat from the hot-water boilers into
the coolers. The Law of Entropy requices only that the total

amount of entropy of the system increase, and this can be easily
arranosd hy maling tha cannnd fantar lavaar than tha Beed MTlaa




molecules we can bring some order in one region, if we do not
mind the fact that this will make the motion in other parts still
more disorderly. And in many practical cases, as in all kinds of
heat engines, we do not mind it.

5. STATISTICAL FLUCTUATION

The discussion of the previous section must have made it clear
to you that the Law of Entropy and all its consequences is based
entirely on the fact that in large-scale physics we are always
dealing with an immensely large number of separate molecules,
so that any prediction based on probability considerations be-
comes almost an absolute certainty. However, this kind of predic-
tion becomes considerably less certain when we consider very
small amounts of matter. )

Thus, for example, if instead of considering the air filling a
large room, as in the previous example, we take a much smaller
volume of gas, say a cube measuring one hundredth of a
micron!? each way, the situation will look entirely different. In
fact, since the volume of our cube is 10-!® cu cm it will contain

18,
onlyloi;.l%- 80 molecules, and the chance that all of them

will collect in one half of the original volume is (3)%°=10-1°,

On the other hand, because of the much smaller size of the
cube, the molecules will be reshuffled at the rate of 5-10° times
per second (velocity of 0.5 km per second and the distance of
only 10-¢ cm) so that about once every second we shall find that
one half of the cube is empty. It goes without saying that the
cases when only a certain fraction of molecules become con-
centrated at one end of our small cube occur considerably more
often. Thus for example the distribution 'n which 20 molecules
are at one end and 10 molecules at the cther (i.e only 10 extra
molecules collected at one end) will occur with the frequency
of (3)1°x5-101°=10-3x 5% 1010=5x 107, that is, 50,000,000 times
per second.

Thus, on a small scale, the distribuion of molecules in the air is

320One micron, usually denoted by Greek letter Mu (), is 0.0001 cm.
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far from being uniform, If we could use sufficient magnification,
we should notice the small concentration of molecules being
instantaneously formed at various points of the gas, only to be
dissolved again, and be replaced by other similar concentrations
appearing at other points. This effect is known as fluctuation of
density and plays an important role in many physical phenomena.
Thus, for example, when the rays of the sun pass through the
atmosphere these inhomogeneities cause the scattering of blue
rays of the spectrum, giving to the sky its familiar color and mak-
ing the sun look redder than it actually is. This effect of redden-
ing is especially pronounced during the sunset, when the sun
rays must pass through the thicker layer of air. Were these fluctua-
tions of density not present the sky would always look completely
black and the stars could be seen during the day.

Similar, though less pronounced, fluctuations of density and
pressure also take place in ordinary liquids, and another way
of describing the cause of Brownian motion is by saying that
the tiny particles suspended in the water are pushed to and fro
because of rapidly varying changes of pressure acting on their
opposite sides. When the liquid is heated until it is close to its
boiling point, the fluctuations of density become more pro-
nounced and cause a slight opalescence.

We can ask ourselves now whether the Law of Entropy applies
to such small objects as those to which the statistical fluctuatior.s
become of primary importance. Certainly a bacterium, which
through all its life is tossed around by molecular impacts, will
sneer at the statement that heat cannot go over into mechanical
motion! But :* would be more correct to say in this case that the
Law of Entropy loses its sense, rather than to say that it is
violated. In fact all that this law says is that molecular motion
cannot be transformed completely into the motion of large
objects containing immense numbers of separate molecules. For
a bacterium, which is not much larger than the molecules them-
selves, the difference between the thermal and mechai{ical motion
has practically disappeared, and it would consider the molecular
collisions tossing it around in the same way as we would consider
the kicks we get from our fellow citizens in an excited crowd.
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If we were bacteria, we should be able to build a perpetual
motion motor of the second kind by simply tying curselves to a
flying wheel, but then we should not have the brains to use it
to our advantage. Thus there is actually no reason for being
sorry that we are not bacteria!
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applies to all randomly moving

objects whether in kinetic theory or in city traffic.
This story from The New Yorker magazine raises in

fictional form the question of the meaning of ¢ siatisti-

cal law.

2  ThelLaw

Robert M. Coates

1947

HE first intimation that things _
were getting out of hand came

one early-fall evening in the late
nineteen-forties. What happened, sim-
ply, was that between seven and nine
o’clock on that evening the Triborough
Bridge had the heaviest concentration
of outhound traffic in its entire history.

This was odd, for it was 2 weekday
evening (to be precise, 2 Wednesday ),
and though the weather was agrecably
mild and clear, with a moon that was
close enough to being full to lure a cer-
tain number of motorists out of the
city, these facts alone were not enough
to explain the phenomenon. No other
bridge or main highway was affected,
and though the two preceding nights
h.d been equally balmy and moonlit, on
both of these the bridge traffic had run
close to normal.

The bridge personnel, at any rate,
was caught entirely unprepared. A main
artery of traffic, like the Triborough,
wperates under fairly predictable condi-
tions. Motor travel, like most other
large-scale human activities, abeys the
Law of Averages—that great, ancient
rule that states that the actions of people
in the mass will always follow consistent
patterns—and on the basis of past ex-
perience it had always been possihle to
foretell, almost to the last digit, the
numher of cars that would cross the
hridge at any given hour of the day or
night. In this case, though, all rules
were broken.

The hours from seven till nearly inid-
night are normally quict ones on the
hridge., But on that night it was as if
all the motorists in the city, or at any
rate a staggering proportion of them,

Reprinted by perission.

had conspired together to upset cradi-
tion. Beginning almost exactly at seven
o'clock, cars poured anta the bridge in
such numbers and with such rapidity
that the staff at the toll booths was over-
whelmed almost from the start. It wa.
soon apparent that this was no momen-
tary congestion, and as it became more
and more obvious that the traffic jam
promised to be one of truly monumental
proportions, added details of police were
rushed to the scene to help handle it.

Cars streamed in from all direc-
tions—from the Bronx approach and
the Manhattan one, from 125th Strect
and the East River Drive. (At the peak
of the crush, about eight-fifteen, ob-
servers on the bridge reported that the
drive was 2 solid line of car headlights
as far south as the bend at Eighty-ninth
Street, while the congestion crosstown
in Manhattan disrupted traffic as far
west as Amsterdam Avenue.) And per-
haps the most confusing thing about
the whole manifestation was that there
seemed to be na reason for it.

Now and then, as the harried toll-
booth attendants made change for the
seemingly endless stream of cars, they
would question the occupants, and it
soon hecame clear that the very partici-
pants in the monstrous ticup were as
ignorant of its cause as anyone else
was. A report made by Sergeant Alfonse
O'Tole, who commanded the detail in
charge of the Branx approach, is typical.
“Ikept askin’ them,” he said,  ‘Is thare
night football somewhere that we don't
know about? Isit the races you're goin’
to!’ But the funny thing was half the
time they'd he askin’ me. “What's the
¢rowd for, Mac?’ they would say. And

Copyright © 1947 The New Yorker Magozine, Inc.

I’d just look at them. There was one
guy I mind, in 2 Ford convertible with
a girl in the seat beside him, and when
he asked me, I said to him, ‘Hell, you’re
in the crowd, ain’t you?’ I said. ‘What
brings you here!’ And the dummy just
looked at me. ‘Me?’ he says. ‘I just
come out for a-drive in the moonlight.
Butif I'd known there’d be a crowd like
this. .." he says. And then he asks me,
‘Is there any place I can turn around
and get out of this?’” As the Herald
Tribune summed things up in its story
next morning, it “just looked asif every-
body in Manhattan who owned 2
motorcar had decided to drive out on
Loag Island that evening.”

HE incident was unusual enough

to make all the front pages next
morning, and because of this, many sim-
ilar events, which might otherwise have
gone unnaticed, received attention. The
proprictor of the Aramis Theatre, on
Eighth Avenue, r-ported that on sev-
eral nights in the recent past his audi-
torium had been practically empty,
while on others it had heen jammed to
suffocation. Lunchroom owners noted
that increasingly their patrons were de-
velaping a habit of making runs on spe-
cific items; one day it would be the roast
shoulder of veal with pan gravy that
was ordered almost exclusively, while
the next everyone would be taking the
Vi.nna loaf, and the roast veal went
hegging. A man who ran a small no-
tions store in Bayside revcaled that over
a period of four days two hundred and
seventy-four successive customers had
entered his shop and asked for a spool
of pink thread.
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These were news items that would
ordinarily have gone into the papers as
fillers or in the sections reserved for
odditics. Now, however, they seemed
to have a more serious significance. It
was apparent at Jast that something de-
ciuedly strange was happening to peo-
ple’s habits, and it was as unsettling
as those occasional moments on excur-
sion boats when the passengers are
moved, all at once, to rush to one side
or the other of the vessel. It was
not till one day in December when,
almost incredibly, the Twentieth Ce.-
tury Limited left New York for Chi-
cago with just three passengers aboard
that business leaders discovered how
disastrous the new trend could be, too.

Until then, the New York Central,
for instance, could operate confidently
or the assumption that although there
might be several thousand men in New
York who had business relations in
Chicago, on any single day no more—
and no less—than some hundreds of
them would have occasion to go there.
The play producer could be sure that his
patronage would sort itself out and
that roughly as many persons would
want to see the performance on Thurs-
day as there had been on Tuesday or
Wednesday. Now they couldn’t be sure
of anything. The Law of Averages had
gone by the board, and if the effect on
business promised to be catastrophic, it
was also singularly unnerving for the
general customer.

The lady starting downtown for a
day of shopping, for example, could
never be sure whether she would find
Macy’s department store a seething
mob of other shappers or 2 wilderness
of empty, echoing aisles and unoccupied
salesgirls. And the uncertainty pro-

duced a strange sort of jitteriness in the
individual when faced with any impulse
to action. “Shall we do it or shan’t
wel" people kept asking themselves,
knowing that if they did do it, it might
turn out.that thousands of other indi-
viduals had decided similarly; knowing,
too, that if they didn’t, they might miss
the one glorious chance of all chances
to have Jones Beach, say, practically to
themselves. Business languished, and 2
sort of desperate uncertainty rode ev-
eryone.

AT this juncture, it was inevitable
that Congress should be called on
for action. In fact, Congress called on
itse'f, and it must be said that it rose
nobly to the occasion. A committee
was appointed, drawn from both Houses
and headed by Senator J. Wing Sloop-
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er (R.), of Indiana, and though after
considerable investigation the commit-
tee was forced reluctantly to conclude
that there was no evidence of Com-
mui,ist instigation, the unconscious sub-
versiveness of the people’s present con-
duct was obvious at 2 glance. The
problem was what to do aboutit. You
can’t indict 2 whole nation, particu-
larly on such vague grounds as these
were. But, as Senator Slooper bold-
ly pointed out, “You can control it,”
and in the end a system of reéduca-
tion and reform was decided upon, de-
signed to lead people back to—again
we quote Senator Slooper—*the basic
regularities, the homely averageness of
the American way of life.”

In the course of the committee’s in-
vestigations, it had been discovered, to
everyone’s dismay, that the Law of
Averages had never been incorporated
into the body of federal jurisprudence,
and though the upholders of States’
Rights rebelled violently, the oversight
was at once corrected, both by Consti-
tutional amendment and by 2 law—the
Hills-Slooper  Act—implementing it
According to the Act, people were re-

quired to be average, aad, as the simplest
way of assuring it, they were divided
alphabetically and their permissible
activities catalogued accordingly. Thus,
by the plan, a person whose name began
with “G,” “N,” or “U,” for example,
could attend the theatre only on Tues-
days, and he could go to baseball games
only on Thursdays, whereas his visits
to 2 haberdashery were confined to the
hours between ten o'clack and noon on
Mondays.

The law, of course, had iis disadvan-
tzges. It had 2 crippling effect on thea-
tre parties, among other social functions,
and the cost of enforcing it was un-
believably heavy. In the end, too, so
many amendments had to be added to
it—such as the one permitting gentle-
men to take their fiancées (if accredit-
ed) along with them to various events
and functions no matter what leteer the

-said fiancées’ names began with—that

the courts were frequently at 2 loss 10
interpret it when confronted with vio-
lations.

In its way, though, the law did serve
its purpose, for it did induce——rather
mechanically, it is true, but still ade-
quately—a return to that average ex-
istence that Senator Slooper desired. All,
indeed, would have been well if a year
or so jater disquicting reposts had not
begun to seep in from the backwoods.
It seemed that there, in what had hith-
erto been considered to be marginal
areas, a strange wave of prosperity was

making itself felt. Tennessee moun-
tineers were buying Packard converti-
bles, and Sears, Roehuck reported that
in the Ozarks their sales of luxury items
had gone up nine hundred per cent. In
the scrub sectior . of Vermont, men who
formerly had barely been able to scratch
a living from their rock-strewn acres
were now sending their daughters to
Europe and ordering expensive cigars
from New York. It appeared that the
Law of Diminishing Returns was going
haywize, too. —RoBERT M. CoatEs




How can a viewer distinguish whether a film is being
run forward or backward? The direction of increasing
disorder helps to fix the direction of the arrow of time.

9  The Arrow of Time

Jacob Bronowski

. 1964

This chapter and those that follow deal with time.
In particular, this chapter looks at the direction of
time. Why does time go one way only? Why cannot
we turn time backw:rds? Why are we not able to
travel in time, back and forth?

The idea of time travel has fascinated men. Even
folklore contains legends about travel in time. Aad
science fiction, from The Time Machine onwards, has
been pre-occupied with this theme. Plainly, men feel
themselves to be imprisoned in the single direction
of time. They would like to move about in time as
freely as they can move in space.

And time is in some way like space. Like space,
time is not a thing but is a relation between things.
The essence of space is that it describes an order

among things—higher or lower, in front or behind,
to left or to right. The essence of time also is that it
describes an order—earlier or later. Yet we cannot
move things in time as we can in space. Time must
therefore describe some fundamental process in
nature which we do not control.

It is not easy to discuss time without bringing in
some way of measuring it—a clock of one sort or
another. Yet if all the clocks in the world stopped,
and if we all lost all inner sense of time, we could
st'i! tell earlier from later. The essential natu..e of
time does not depend on clocks. That is the point of
this chapter, and we will begin by illustrating it
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from very simple and common experiences.

The three pairs of pictures point the way. They
help to show what it is that enables us to tell earlier
from later without a clock. In each pair, the pictures
are arranged at random, and not necessarily in the
sequence of time. Yet in all except the first pair, it
is easy to arrange the pictures; the sequence in time
is obvious. Only the first pair does not betray its time
sequence. What is the difference between the first
pair of pictures and the other two pairs?

We get a clue to the difference when we study the
arrangement of the things in each picture. In the first
pair, we cannot really distinguish one arrangement
from another; they are equally tidy and orderly. The
two pictures of the first pair show a shot at billiards.

_ The billiard balls are as well arranged after the shot

as before; there is no obvious difference between
the arrangements.

The situation is different in the other two paurs.
A broken cgg is an entirely different arrangement
from a whole egg. A snooker pyramid is quite

different from a jumble of balls.

And not only are the arrangements here different.
Once they are different, it is quite clear which
arrangement comes before the other. Whole eggs
come before broken ones. The snooker pyramid
comes before the spread of the balls.

In each case, the earlier arrangement is more
ordered than the later. Time produces disorder; that
is the lesson of these pictures. And it is also the
lesson of this chapter. The arrow of time is loss
of order.

In a game of snooker, we know quite well that the
highly ordered arrangement of the balls at the be-
ginning of the game comes before the disordered
arrangement at the end of the first shot. Indeed, the
first shot is called ‘breaking the pyramid’; and
breaking is a destructive action—it destroys order.
It is just not conceivable that fifteen balls would
gather themselves up into a pyramid, however skilful
the player. The universe does not suddenly create
order out of disorder.




[€)

ERIC

PAFullToxt Provided by ERIC

These pictures show the same thing again. When
a spot of powdered dye is put on the surface of

-water, it spreads out and gradually dissolves. Dye

would never come out of solution and stream to-
gether by itself to gather in a spot on the surface.
Again ‘ime is breaking down order and making dis-
order. It disperses the dye randomly through the
water.

We know at once that the stones in the picture be-
low were shaped and erected a very long time ago.
Their rough, weathered surfaces bear the mark of
time. Itis still possible to reconstruct the once orderly
arrangement of the stones of Stonehenge. But thz
once orderly surface of each stone cannot be re-
covered. Atom by atom, the smooth surface has
been carried away, and is lost to chaos.

And here finally is the most interesting of all the
pictures in which time betrays itseif. In these shots
from an old film the heroine has been tied to the
rails—a splendid tradition of silent films. A train is
approaching, but of course it stops just in time. The
role of the heroine would seem to call for strong
nerves as well as dramatic ability, if she has to trust
the engine driver to stop the locomotive exactly
where he is told. However, the last few yards of the
approach are in fact done by a trick. The locomotive

The Arrow of Time

is started close to the heroine and is backed away:
and the film is then run backwards.

There is only one thing that gives this trick away.
When the film is run backwards, the smoke visibly
goes into the funnel instead of coming out of it. We
know that in reality, smoke behaves like the spread-
ing dye: it becomes more disorderly, the further it
gets from thé funnel. So when we ses disorder coming
before order, we realise that something is wrong.
Sraoke does not of itself collect together and stream
down a funncl.

One thing remains to clear up in these examples.
We began with an example in which earlier and later
were equally well ordered. The example was a shot
~t hilliards. The planets in their orbits would be
a.tuther example, in which there would be nothing
to say which arrangement comes first.

Then does time stand still in billiards and planetary
motion? No, time is still doing its work of disorder.
We may not see the effects at once, but they are
there. For billiard balls and planets gradually lose
material from their surface, just like the stones of
Stonehenge. Time destroys their orderly shape too.
A billiard ball is not quite the same after a shot
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as before it. A planet is not quite the same in each
successive orbit. And the changes are in the direction
of disorder. Atoms are lost from ordered structures
and return to chaos. The direction of time is from
order to disorder.

That is one reason why perpetual motion machines
are impossible. Time cannot be brought to a stand-

still. We cannot freeze the arrangemen: of theatoms, .

even in a tiny corner of the universe. And that is what
we should have to do to make a perpetual motion
machine. The machine would have to remain the
same, atom for atom, for all time. Time ould have
to stand still for it.

For example, take the first of these three machines
from a famous book of Perpetual Motion Machines.
It is meant to be kept going by balls in each sector,
which roll from the centre to the rim and back again
as the wheel turns. Of course it does not work. There
is friction in the bearing of the wheel, and more
friction between the balls and the tracks they run on.
Every movement rubs off a few atoms. The bearings
wear, the balls lose their smooth roundness. Time
does not stand still.

The second machine is more complicated and
sillier. It is designed to work like a waterwheel with
little balls instead of water. At the bottom the balls
roll out of their compartments down the chute, and
on to a moving belt which is to lift them to the top
again. That is how the machine is meant to keep
going. In fact, when we built it, it came to a stop
every few minutes.

The pendulum arrangement in the third picture also
comes from the book of Perpetual Motion Machines.
A ball runs backwards and foiwards in the trough
on top to keep it going. There are also elastic strings
at each «nd for good measure. This machine at least
works for short bursts. But as a perpetual motion
machine, it has the same defects as the others.
Nothing can be done to get rid of friction; and
where: there is friction, there must be wear.

This last point is usually put a little differently.
Every machine has friction. It has to be supplied
with energy to overcome the friction. And this
energy cannot be recovered. In fact, this energy is
lost in heat, and in wear—that is, in moving atoms
out of their order, and in losing them. That is an-
other way of putting the same reasoning, and shows
equally (in different language) why a perpetual
niotion machine cannot work.

Before we put these fanciful monsters out of mind,
it is worth seeing how beautifully a fine machine can
be made. It cannot conquer the disorder of time, it
cannot get rid of friction, but it can keep them to a

The Arrow
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minimum. So here on this page are two splendid
clocks which make no pretence to do the impossible,
yet which go as far as it is possible to go by means
of exact and intelligent craftsmanship.

These clocks are not intended to be perpetual
motion machines. Each has an outside source of
energy to keep it going. In the clock at the top, it is
ordinary clockwork which tips the platform when-
ever the ball has completed a run. The clock below
is more tricky: it has no clockwork spring, and
instead is driven by temperature differences in the
air. But even if there was someone to wind one clock,
and suitable air conditions for the other, they could
not run for ever. They would wear out. That is, their
ordered structure would slowly become more dis-
ordered until they stopped. The clock with no spring
would run for several hundred years, but it could
not run for ever.

To summarise: the direction of time in the uni-

verse is marked by increasing disorder. Even without
clocks and without an inner sense of time, we could
tell later and earlier. ‘Later’ is characterised by the
greater disorder, by the growing randomness of the
universe,

We ought to be clear what these descriptive
phrases mean. Order is a very special arrangement;
and disorder means the foss of what makes it =pecial.
When we say that the universe is becoming more
disordered, more random, we mean that the special
arrangements in this place or that are being evened
out. The peaks are made lower, the holes are filled
in. The extremes disappear, and all parts sink more
and more towards a level average. Disorder
and randomness are not wild states; they are simply
states which have no special arrangement, and in
which everything is therefore near the average.

Even in disorder, of course, things move and
deviate round their average. But they deviate by
chance, and chance then takes them back to the
average. It is only in exceptional cases that a devia-
tion becomes fixed, and perpetuates itself, These
exceptions are fascinating and important, and we
now turn to them.

The movement towards randomness, we repeat, is
not uniform. It is statistical, a general trend. And
(as we saw in Chapter 8) the units that make up a
general trend do not all flow in the same direction.
Here and there, in the midst of the flow towards
an average of chaos, there are places where the flow
is reversed for a time. The most remarkable of these
reversals is life. Life as it were is running against
time. Life is tae very opposite of randomness.

How this can come about can be shown by an
analogy. The flow of time is like an endless shuffling
of a pack of cards. A typical hand dealt after long
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shutiling will be random—say four diamonds, a
couple of spades, four clubs, and three hearts. This
is the sort of hand a bridge player expects to pick up
several times in an evening. Yet every now and then
a bridge player picks up a freak hand. For example,
from time to time a player picks up all thirteen
spades. And this does not mean that the pack was
not properly . huffled. A hand of thirteen spades can
arise by chan.e, and does; the odds against it are
high, but they are not astronomic. Life started with
a chance accident of this kind. The odds against it
were high, but they were not astronomic.

The special thing about life is that it is self-
perpetuating. The freak hand, instead of disappear-
ing in the next shuffle, reproduces itself. Once the
thirteen spades of life are dealt, they keep their
order, and they impose it on the pack from then on.
This is what distinguishes life from other freaks,
other deviations from the average.

There are other happenings in the universe that
run against the flow of time for a while. The forma-
tion of a star from the interstellar dust is such a
happening. When a star is formed, the dust that
forms it becomes less random; its order is increased,
not decreased. Butstars do not reproduce themselves.
Once the star is formed, the accident is over. The
flow towards disorder starts again. The deviation
begins to ebb back towards the average.
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Life is a deviation of a special kind; it is a self-
reproducing accident. Once its highly ordered
arrangeinent occurs, once the thirteen spades happen
to be dealt in one hand, it repeats itself. The order
was reached by chance, but it then survives because
it is able to perpetuate itself, and to impose itself on
other matter.

It is rare to find in dead matter behaviour of this
kind which illustrates the way in which fife imposes
its order. An analogy of a kind, however, is found
in the growth of crystals. When a supercooled solu-
tion is ready to form crystals, it needs something to
start it off. Now we introduce the outside accident,
the freal: hand at bridge. That is, we introduce a tiny
crystal that we have made, and we drop it in. At
once the crystal starts to grow and to impose its
own shape round it.

In this analogy, the first crystal is a seed, like the

The Arnrow of Time

seed of life. Without it, the supercooled solution
would remain dead, unchanged for hours or even
days. And like the seed of life, the first crystal im-
poses its order alf round it. It reproduces itself many
times over.

Nearly five hundred vears ago, Leonardo da Vinci
described time as the destroyer of all things. So we
have seen it in this chapter. It is (ke nature of time
to destroy things, to turn order into disorder. This
indeed gives time its single direction—its arrow.

But the arrow of time is only statistical. The
general trend is towards an average chaos; yet there
are deviations which move in the opposite direction.
Life is the most important deviation of this kind. 1t
is able to reproduce itself, and so to perpetuate the
order which began by accident. Life runs against the
disorder of time.
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The biography of this great Scottish phys‘cist, renowned
both for kinetic theory and for his mathematical formu-
lation of the laws of electricitv ~- wetism, is pre=
sented in two parts. The secc [« s selection is

in Reader 4.

James Clerk Maxwell

James R. Newman

19556

AMES CLERK MAXWELL was the greatest theo-

retical physicist of the nineteenth century. His

discoveries opened a new epoch of science, and much of what
distinguishes our world from his is due to his work. Because
his ideas found perfect expression in mathematical symbol-
ism, and also hecause his most spectacular triumph — the
prophecy of the existence of electromagnetic waves — was
the fruit of theoretical rather than experimental researches, he
is often cited as the supreme example of a scientist who builds
his systems entirely with pencil and paper. Thic notion is
false. He was not, it is true, primarily an experimentalist. He
had not the magical touch of Faraday, of whom Helmholtz
once okserved after a visit to his laboratory that “a few wires
and some old bits of wood and iron seem to serve him for the
greatest discoveries.” Nonetheless he combined a profound
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physical intuition with a formidable mathematical capacity to
produce results “partaking of both natures.” On the one hand,
Maxwell never lost sight of the phenomena to be explained,
nor permitted himself, as he said, to be drawn aside from the
subject in pursuit of “analytical subtleties” ; on the other hand,
the use of mathematical methods conferred freedor on his in.
quiries and enabled him to gain physical insights without com-
mitting himself to a physical theory. This blending of the
concrete and the abstract was the characteristic of almost all
his researches.

Maxwell was born at Edinburgh on November 13, 1831,
the same year Faraday announced his faznous discovery of
electromagnetic induction. He was descended of the Clerks of
Penicuick in Midlothian, an old Scots family distinguished no
less for their individuality, “verging on eccentricity,” than
for their talents. His forbears included eminent lawyers,
judges, politicians, mining speculators, merchants, poets, mu-
sicians, and also the author (John Clerk) of a thick book on
naval tactics, .whose naval experience appears to have been
confined entirely to sailing mimic men of war on the fishponds
at Penicuick. The naine Maxwell was assumed by James’s
father, John Clerk, on inheriting the small estate of Middlebie
from his grandfather Sir George Clerk Maxwell.

At Glenlair, a two-day carriage ride from Edinburgh and
“very much in the wilds,” in a house buil. by his father shortly
after he married, Maxwell passed his infancy and early boy-
hood. It was a happy time. He was an only son {a sister, born
earlier, died in infancy) in a close-knit, comfortably-off fam-
ily. John Clerk Maxwell had been called to the Scottish bar
but took little interest in the grubby pursuits of an advocate.
Instead the laird managed his small estates, took part in county
affairs and gave loving attention to the education of his son.
He was a warm and rather simple man with a nice sense of
humor and a penchant for doing things with what he called
“Judiciosity”; his main characteristic, according to Maxwell’s
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James Clerk Maxwell

James Clerk Maxswell.
("he Bettmann Archive)
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biographer Lewis Campbell,* was a “persistent practical in-
terest in all useful purposes.” Maxwell’s mother, Frances Cay,
who came of a well-known Northumbrian family, is described
as having a “sanguine, active temperament.”

Jamesie, as he was called, was a nearsighted, lively, affec-
tionate little boy, as persistently inquisitive as his father and
as fascinated by mechanical contrivances. To discover of any-
thing “how it doos” was his constant aim. *“What’s the go of
that?” he would ask, and if the answer did .ot satisfy him he
would add, “But what’s the particular go of that?” His first
creation was a set of figures for a “wheel of life,” a scientific
toy that produced the illusion of continuous movement; he
was fond of making things with his hands, and in later life
knew how to design models embodying the most complex mo-
tions and other physical processes.

When Maxwell was nine, his mother died of cancer, the
same disease that was to kill him forty years later. Her death
drew father and son even more closely together, and many in-
tiznate glimpses of Maxwell in his younger years emerge from
the candid and affectionate letters he wrote to his fatiier from
the time he entered school until he graduated from Cambridge.

Maxwell was admitted to Edinburgh Academy as a day
student when he was ten years old. His early school experi-
ences were painful. The master, a dryish Scotsman whose
reputation derived from a book titled Account of the Irregular
Greek Verbs and from the fact that he was a good disciplin-
arian, expected his students to be orderly, well-grounded in
the usual subjects and unoriginal. Maxwell was deficient in
all these departments. He created something of a sensation
because of his clothes, which had been designed by his strong-

* The standard biography (London, 1882) is b Lewis Campbell and William
Garnett. Campbell wrote the first part, which portrays Maxwell's life; Garnett
the second part, dealing with Maxwell's contributions to science. A shorter
bhiography, especially valuable for the scientific exposition, is by the mathema.
tician R. T. Glazebrook (James Clerk Maxwell and Modern Physics, London,
1901). In this essay, material in quotation marks, otherwise unattributed, is
from Campbell and Garnett.
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Hluminated letter was written by Maxwell to his father in 1842, when the
younger Maxwell was 11. The letter refers to a lecture by the American
frontier artist, George Catlin. (Scientific American)
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minded father and included such items as “hygienic” square-
toed shoes and a lace-frilled tunic. The boys nicknamed him
“Dafty” and mussed him up, but he was a stubborn child and
in time won the respect of his classmates even if he continued
to puzzle them. There was a gradual awakening of mathe-
matical interests. He wrote his father that he had made a
“tetra hedron, a dodeca hedron, and two more hedrons that I -
don’t know the wright names for,” that he enjoyed playing
with the “boies,” that he attended a performance of some
“Virginian minstrels,” that he was composing Latin verse and
making a list of the Kings of Israel and Judah. Also, he sent
him the riddle of the simpleton who “wishing to swim was
nearly drowned. As soon as he got out he swore that he would
never touch water till he had learned to swim.” In his four-
teenth year he won the Academy’s mathematical medal and
wrote a paper on a mechanical method, using pins and thread,
of constructing perfect oval curves. Another prodigious little
boy, René Descartes, had anticipated Maxwell in this field, but
Maxwell’s contributions were completely independent and
original. It was a wonderful day for father and son when they
heard “Jas’s” paper on ovals read before the Royal Society of
Edinburgh by Professor James Forbes: “Met,” Mr. Maxwell
wrote of the event in his diary, “with very great attention and
approbation generally.”

After six years at the Academy, Maxwell entered the Uni-
versity of Edinburgh. He was sixteen, a restless, enigmatic,
brilliantly talented adolescent who wrote not very good but
strangely prophetic verse about the destiny of matter and
energy:

When earth and sun are frozen clods,
When all its energy degraded
Matter to aether shall have faded

His friend and bLiographer Campbell records that James was
completely neat in his person “though with a rooted objection
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to the vanities of starch and gloves,” and that he had-a “pious
horror of destroying anything — even a scrap of writing pa-
per.” He had a quaint humor, read voraciously and passed
much time in mathematical speculations and in chemical, mag-
netic and optical experiments. “When at table he often seemed
abstracted from what was going on, being absorbed in observ-
ing the effects of refracted light in the finger glasses, or in try-
ing some experiment with his eyes — seeing around a corner,
making invisible stereoscopes, and the like. Miss Cay [his aunt]
used to call his attention by crying, ‘Jamesie, you'’re in a
prop!” [an abbreviation for mathematical proposition].” e
was by row a regular visitor at the meetings of the Edinburgh
Royal Society, and two of his papers, on “Rolling Curves”
and on the “Equilibrium of Elastic Solids,” were published
in the Trarsactions. The papers were read before the Society
by others “for it was not thought proper for a boy in a round
jacket to mount the rostrum there.” During vacations at Glen-
lair he was tremendously active and enjoyed reporting his
multifarious doings in long letters to friends. A typical com-
munication, when Maxwell was seventeen, tells Campbell of
building an “electro-magnetic machine,” taking off an hour to
read Poisson’s pavers on electrlcny and magneusm (“as I am
pleased with him today”’), swimming and engaging in “aquatic
experiments,” making a centrifugal pump, reading Herodotus,
designing regular geometric figures, working on an electric
telegraph, recording thermometer and barometer readings,
embedding a beetle in wax to see if it was a good conductor of
electricity (“not at all cruel, because I slew him ir. boiling
water in which he never kicked”), taking the dogs out, picking
fruit, doing “violent exercise” and solving props. Many of his
letters exhibit his metaphysical leanings, especially an intense
interest in moral philosophy. This bent of his thoughi, while
showing no particular originality. reflects his social sympathy,
his Christian earnestness, the not uncommon nineteenth-century
mixture of rationalism and simple faith. It was a period when
men still shared the eighteenth-century belief that questions of

m




wisdom, happiness and virtue could be studied as one studies
optics and mechanics.

In 1850 Maxwell quit the University of Edinburgh for
Cambridge. After a term at Peterhouse College he migrated
to Trinity where the opportunity seemed better of obtaining
ultimately a mathematical fellowship. In his second year he
became a private pupil of William Hopkins, considered the
ablest mathematics coach of his time. It was Hopkins’s job to
prepare his pupils for the stiff competitive examinations, the
mathematical tripos, in which the attainment of high place
insured academic preferment. Hopkins was not easily im.
pressed; the brightest students begged to join his group, and
the famous physicists George Stokes and William Thomson
(later Lord Kelvin) had been among his pupils. But from the
beginning he recognized the talents of the black-haired young
Scotsman, describing him as “the most extraordinary man I
have ever met,” and adding that “it appears impossible for
[him] to think incorrectly on physical subjects.” Maxwell
worked hard as an undergraduate, attending the lectures of
Stokes and others and faithfully doing what he called “old
Hop’s props.” He joined fully in social and intellectual ac-
tivities and was made one of the Apostles, a club limited to
twelve members, which for many years included the outstand
ing young men at Cambridge. A contemporary describes him
as “the most genial and amusing of companions, the pro-
pounder of many a strange theory, the composer of many a
poetic jeu d’esprit.” Not the least strange of his theories re-
lated to finding an effective economy of work and slecp. He
would sleep from 5 in the afternoon to 9:30, read very hard
from 10 to 2, exercise by running along the corridors and up
and down stairs from 2 to 2:30 A.M. and sleep again from
2:30 to 7. The occupants of the rooms along his track were
not pleased, but Maxwell persisted in his bizarre experiments.
Less disturbing were his investigations of the process by which
a cat lands always on her feet. He demonstrated that a cat
could right herself even when dropped upside down on a table
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or bed from about two inches. A complete record of these valu-
able researches is unfortunately not available.

A severe illness, referred to as a “sort of brain fever,”
seized Maxwell in the summer of 1853. For weeks he was
totally disabled and he felt effects of his illness long after-
ward. Despite th:e abundance of details about his life, it is hard
to get to the man underneath. From his letters one gleans evi-
dence of deep inner struggles and anxieties, and the attack of
“brain fever” was undoubtedly an emotional crisis; but its
causes remain obscure. All that is known is that his illness
strengthened Maxwell’s religious conviction — a deep, ear-
nest piety, leaning to Scottish Calvinism yet never c:mpletely
identified with any particular system or sect. “I have 110 nose
for heresy,” he used to say.

In January, 1854, with a rug wrapped round his feet and
legs (as his father had advised) to mitigate the perishing cold
in the Cambridge Senate House where the elders met and
examinations were given, he took the tripos. His head was
warm enough. He finished second wrangler, behind the noted
mathematician, Edward Routh. (In another competitive or-
deal, for the “Smith’s Prize,” where the subjects were more
advanced, Maxwell and Routh tied for first.)

After getting his degree, Maxwell stayed on for a while at
Trinity, taking private pupils, reading Berkeley’s Theory of
Vision, which he greatly admired, and Mill’s Logic, which he
admired less: (“I take him slowly . .. I do not think him the
last of his kind”), and doing experiments on the effects pro-
duced by mixing colors. His apparatus consisted of a top,
which he had designed himself, and color i paper discs that
could be slipped one over the other and arranged round the
top’s axis so that any given portion of each color could be
exposed. When the top was spun rapidly, the sectors of the
different colors became indistinguishable and the whole ap-
peared of one uniform tint. He was able to show that suitable
combinations of three primary colors — red, green and blue
— produced “to a very near degree of approximation” almost
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every color of the spectrum. In each case the required combi-
nation could be quantitatively determined by measuring the
sizes of the exposed sectors of the primary-color discs. Thus,
for examplz, 66.6 parts of red and 33.4 parts of green gave
the same chromatic effect as 29.1 parts of yellow and 24.1
parts of blue. In general, color composition could be expressed
by an equation of the form

sX=ad + b8 + cC

— shorthand for the statement that x parts of X can be matched
by @ parts of 4, b parts of B and ¢ parts of C. This symbolism
worked out very prettily, for “if the sign of one of the cnanti-
ties, a, b, or ¢ was negative, it simply meant that that color had
to be combined with X to match the other two.”* The problem
of color perception drew Maxwell’s attention on and off for
several years, and enlarged his scientific reputation. The work
was one phase of his passionate interest in optics, a subject to
which he made many contributions ranging from papers on
geometrical optics to the invention of an ophthalmoscope and
studies in the “Art of Squinting.” Hermann von Helmholtz was
of course the great leader i the field of color sensation, but
Maxwell’s work was independent and of high merit and in
1860 won him the Rumford Medal of the Royal Society.
These investigations, however, for all their importance,
cannot be counted the most significant activity of the two post-
graduate years at Trinity. For during this same period he was
reading with intense absorption Faraday’s Experimental Re-
searches, and the effect of this great record on his mind is
scarcely to be overestimated. He had, as he wrote his father,

. been “working away at Electricity again, and [I] have been

working my way into the views of heavy German writers. It

* Glazebrook, op. cit., pp. 101-102. See also Maxwell's paper, “Experiments on
Colour, as perceived by :he Eye, with remarks on Colour-Blindness,” Transac-
tions of the Royal Society of Edinburgh, vol. XXI, part H; collected in The
Scientific Papers of James Clerk Mazwell, edited by W. D. Niven, Cambridge,
1890,
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James Clerk Maxwell

Color wheel is depicted in Max-
well's essay “Experiments in
Colour, as perceived by the Eye,
with remarks on Colour-Blind-
ness.” The wheel is shown at
the top. The apparatus for rotat-
ing it is at the bottom.
(Scientific American)

takes a long time to reduce to order all the notions one gets
from these men, but I hope to see my way through the subject,
and arrive at something intelligible in the way of a theory.”
Faraday’s wonderful mechanical analogies suited Maxwell
perfectly; they were what he needed to stimulate his own con-
jectures. Like Faraday, he thought more easily in images than
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abstractions: the models came first, the mathematics later. A
Cambridge contemporary said that in their student days,
whenever the subject admitted of it, Maxwell “had recourse
to diagrams, though the rest [of the class] might solve the
question more easily by a train of analysis.” It was his aim,
he wrote, to take Faraday’s ideas and to show how “the con-
nexion of the very different orders of phenomena which he
nad discovered may be clearly placed before the mathematical
mind.”* Before the year 1855 was out, Maxwell had pub-
lished his first major contribution to electrical science, the
beautiful paper “On Faraday’s Lires of Force,” to which I
shall return when considering his over-all achievements in the
field.

Trinity elected Maxwell to a fellowship in 1855, and he
began to lecture in hydrostatics and optics. But his father’s
health, unsettled for some time, now deteriorated further, and
it was partly to avoid their being separated that he became a
candidate for the chair of natural philosophy at Marischal
College, Aberdeen. In 1856 his appointment was announced;
his father, however, had died a few days before, an irrepar-
able personal loss to Maxwell. They had been as close as
father and son could be. They confided in each other, under-
stood each other and were in certain admirable traits much
alike.

The four years at Aberdeen were years of preparation as
well as achievement. Management of his estate, the design of

* The following quotation from the preface to Maxwell's Treatise on Electricity
and Magnetism (Cambridge, 1873) gives Maxwell’s views of Faraday in his own
words: “Before I began the study of electricity I resolved to read no mathe
matics on the subject till I had first read through Faraday’s Experimental Re.
searches in Electricity. I was aware that there was supposed to be a difference
between Faraday's way of conceiving phenomena and that of the mathematicians
so that neither he nor they were satisfied with each other’s language. I had also
the conviction that this discrepancy did not arise from ejther party being wrong.
- « - As I proceeded with the study of Faraday, I perceived that his method of
conceiving the phenomena was also a mathematical one, though not exhibited
in the conventional form of mathematical symbols. I also found that these
methods were capable of being expressed in the ordinary mathematical forms,
and these compared with those of the professed mathematicians.”
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a new “compendious” color machine, and the reading of
metaphysics drew on his time. The teaching load was rather
ligat, a circumstance not unduly distressing to Maxwell. He took
his duties seriously, prepared lectures and demonstration ex-
periments very carefully, but it cannot be said he was a great
teacher. At Cambridge, where he had picked students, his
lectures were well attended, but with classes that were, in his
own words, “not bright,” he found it difficult to hit a suitable
pace. He was unable himself to heed the advinc he once gave
a friend whose duty it was to preach to a country cc ngregation:
“Why don’t you give it to them thinner?”’* Electric.s} studies
occupied him both during term and in vacation at lenlair.
“I have proved,” he wrote in a semijocular vein to-his friend
C. J. Monro, “that if there be nine coefficients of magnetic
induction, perpetual motion will set in, and a small crystalline
sphere will inevitably destroy the universe by increasing all
velocities till the friction brings all nature into a state of
incandescence. . . .”

Then suddenly the work on electricity was interrupted by a
task that engrossed him for almost two years. In competition
for the Adams prize of the University of Cambridge (named
in honor of the discoverer of Neptune), Maxwell prepared a
brilliant essay on the subject set by the electors: “The Struc-
ture of Saturn’s Rings.”

Beginning with Galileo, the leading astronomers had cb-
served and attempted to explain the nature of the several con-
centric dark and bright rings encircling the planet Saturn.
The great Huygens had studied the problem. as had the
Frenchman, Jean Dominique Cassini, Sir William Herschel
and his son John, Laplace, and the Harvard mathematician
and astronomer Benjamin Peirce. The main question at the
- time Maxwell entered the competition concerned the stability
of the ring. system: Were the rings solid? Were they fluid?

* Occasionally he enjoyed mystifying his students, but at Aberdeen, where, he
wrote Campbell, “No jokes of any kind are understood,” he did net permit him.
self such innocent enjoyments.
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Did they consist of masses of matter “not mutually coherent”?
The problem was to demonstrate which type of structure ade-
quately explained the motion and permanence of the rings.

Maxwell’s sixty-eight-page essay was a mixture of common
sense, subtle mathematical reasoning and profound insight
into the principles of mechanics.* There was no point, he said
at the outset, in imagining that the motion of the rings was the
result of forces unfamiliar to us. We must assvme that gravi-
tation is the regulating principle and reason accordingly. The
hypothesis that the rings are solid and uniform he quickly
demonstrated to be untenable; indeed Laplace had already
shown that an arrangement of this kind would be so precarious
that even a slight displacement of the center of the ring from
the center of the planet “would originate a motion which would
never be checked, and would inevitably precipitate the ring
upon the planet. . . .”

Suppose the rings were not uniform, but loaded or thick-
ened on the circumference — a hypothesis for which there ap-
peared to be observational evidence. A mechanically stable
system along these lines was theoretically possible; yet here
too, as Maxwell proved mathematically, the delicate adjust-
ment and distribution of mass required could not survive the
most minor perturbations. What of the fluid hypothesis? To be
sure, in this circumstance the rings would not collide with the
planet. On the other hand, by the principles of fluid motion it
can be proved that waves would be set up in the moving rings.
Using methods devised by the French mathematician Joseph
Fourier for studying heat conduction, by means of which
complex wave motions can be resolved into their simple har-
monic, sine-cosine elements, Maxwell succeeded in demon-
strating that the waves of one ring will force waves in anotner
and that, in due time, since the wave amplitudes will increase

* A summary of the work was published in the Proceedings of the Royal Soci-
ety of Edinburgh, vol. IV; this summary and the essay “On the Stability of the
Motion of Saturn’s Rings” appear in the Scientific Papers (op. cit.).
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Mechanical model is depicted here in Figures 7 and 8 of this page from
Maxwell's essay “On the Stability of the Motion of Saturn’s Rings.” In this
essay, Maxwell demonstfated that the rings were neither liquid nor solid, but
composed of particles. (Scientific American)
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indefinitely, the rings will break up into drops. Thus the con-
tinuous-fluid ring is no better a solution of the problem thant! e
solid one.

The third possibi’ity remained, that the rings consist of
disconnected particles, either solid or liquid, but necessarily
independent. Drawing on the mathematical theory of rings,
Maxwell proved that such an arrangement is fairly stable and
its disintegration very slow; that the particles may be disposed
in a series of narrow rings or may move through each other
irregularly. He called this solution his “dusky ring, which is
something like the state of the air supposing the siege of
Sebastopol conducted from a forest of guns 100 miles one
way, and 30,000 miles from the other, and the shot never to
stop, but go spinning away around a circle, radius 170,000
miles. . . .”

Besides the mathematical demonstration, Maxwell devised
an elegantly ingenious model to exhibit the motions of the
satellites in a disturbed ring, “for the edification of sensible
image-worshippers.” His essay — which Sir George Airy, the
Astronomer Royal, described as one of the most remarkable
applications of mathematics he had ever seen — won the prize
and established him as a leader among mathematical physicists.

In 1859 Maxwell read before the British Association his
paper “Hlustrations of the Dynamical Theory of Gases.”*
This marked his entry into a branch of physics that he en-
riched almost as much as he did the science of electricity. Two
circumstances excited his interest in the kinetic theory of gases.
The first was the research on Saturn, when he encountered the
mathematical problem of handling the irregular motions of
the particles in the rings — irregular but resulting nonetheless
in apparen regularity and uniformity — a problem analo-
gous to that of whc Lehavior of the particles of gas. The second
was the publication by the German .physicist Rudn!f Clausius

* Philosophical Magazine, January and July, 1860: also Maxwell's Scientific
Papers, op. cit.
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of two famous memoirs: on the heat produced by molecular
motion and on the average length of the path a gas molecule
travels before colliding with a neighbor. .

Maxwell’s predecessors in this field — Daniel Bernoulli,
James Joule, Clausius, among others — had been successful
in explaining many of the properties of gases, such as pres-
sure, temperature, and density, on the hypothesis that a gas is
composed of swiftly moving particles. However, in order to
simplify the mathematical analysis of the behavior of enor-
mous aggregates of particles, it was thought necessary to make
an altogether implausible auxiliary assumption, namely, that
all the particles of a gas moved at ti 2 same speed. The gifted
British physicist J. J. Waterson alone rejected this assumption,
in a manuscript communicated to the Royal Society in 1845:
he argued cogently that various collisions among the molecules
must produce different velocities and that the gas temperature
is proportional to the square of the velocities of all the mole-
cules. But his manuscript lay forgotten for half a century in
the archives of the Society.

Maxwell, without knowledge of Waterson’s work, arrived at
the same conclusions. He realized that further progress in the
science of gases was not to be cheaply won. If the subject was
to be developed on “strict mechanical principles” — and for
him this rigorous procedure was essential — it was necessary,
he said, not only to concede what was in any case obvious, that
the particles as a result of collisions have different speeds, but
to incorporate this fact into the mathematical formulation of
the laws of motion of the particles.

Now, to describe how two spheres behave on colliding is
hard enough; Maxwell analyzed this event, but only as a prel-
ude to the examination of an enormously more complex phe-
nomenon — the behavior of an “indefinite number of small,
hard and perfectly elastic spheres acting on one another only
during impact.”* The reason for this mathematical investiga-

* “Illustrations of the Dynamical Theory of Gases,” op. cit.
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tion was clear. For as he pointed out, if the properties of this
assemblage are found to correspond to those of molecular
assemblages of gases, “an important physical analogy will be
established, which may lead to more accurate knowledge of
the properties of matter.”

The mathematical methods were to harid but had hitherto
not been applied to the problem. Since the many molecules
cannot be treated individually, Maxwell introduced the statis-
tical method for dealing with the assemblage. This marked a
great forward step in the study of gases. A fundamental Max-
wellian innovation was to regard the molecules as falling into
groups, each group moving within a certain range of velocity.
The groups lose members and gain them, but group population
is apt to remain pretty steady. Of course the groups differ in
size; the largest, as Maxwell concluded, possesses the most
probable velocity, the smaller groups the less probable. In
other words, the velocities of the molecules in a gas can be
conceived as distributed in a pattern — the famous bell-shaped
frequency curve discovered by Gauss, which applies to so
many phenomena from observational errors and distribution
of shots on a target to groupings of men based on height and
weight, and the longevity of electric light bulbs. Thus while
the velocity of an individual molecule might elude description,
the velocity of a crowd of molecules would not. Because this
method afforded knowledge not only of the velocity of a body
of gas as a whole, but also of the groups of differing velocities
composing it, Maxwell was now able to derive a precise formula
for gas pressure. Curiously enough this expression did not
differ from that based on the assumption that the velocity of
all the molecules is the same, but at last the right conclusions
had been won by correct reasoning. Moreover the generality
and elegance of Maxwell’s mathematical methods led to the
extension of their use into almost every branch of physics.

Maxwell went on, in this same paper, to consider another
factor that needed to be determined, namely, the average
number of collisions of each molecule per unit of time, and its
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mean free path (i.e., how far it travels, on the average, be-
tween collisions). These data were essential to accurate formu-
lations of the laws of gases. He reasoned that the most direct
method of computing the path depended upon the viscosity of
the gas. This is the internal friction that occurs when (in Max-
well’s words) “different strata of gas slide upon one another
with different velocities and thus act upon one another with a
tangential force tending to prevent this sliding, and similar in
its results to the friction between two solid surfaces sliding
over each other in the same way.” According to Maxwell’s
hypothesis, the viscosity can be explained as a statistical con-
sequence of innumerable collisions between the molecules and
the resulting exchange of momentum. A very pretty illustra-
tion by the Scotch physicist Balfour Stewart helps to an under-
standing of what is involved. Imagine two trains running with
uniform speed in opposite directions on parallel tracks close
together. Suppose the passengers start to jump across from one
train to the other. Each passenger carries with him a momen-
tum opposite to that of the train onto which he jumps; the
result is that the velocity of both trains is slowed just as if
there were friction between them. A similar process, said
Maxwell, accounts for the apparent viscosity of gases.

Having explained this phenomenon, Maxwell was now able
to show its relationship to the mean free path of the molecules.
Imagine two layers of molecules sliding past each other. If a
molecule passing from one layer to the other travels only a
short distance before colliding with another molecule, the two
particles do not exchange much momentum, because near the
boundary or interface the friction and difference of. velocity
between the two layers is smiall. But if the molecule penetrates
deep into the other layer before a collision, the friction and
velocity differential will be greater; hence the exchange of
momentum between the colliding particles will be greater.
This amounts to saying that in any gas with high viscosity the
molecules must have a long mean free path.

Maxwell deduced further the paradoxical and fundamental
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fact that the viscosity of gas is independent of its density. The
reason is that a particle entering a dense — i.e., highly crowded
— gas will not travel far before colliding with another par-
ticle; but penetration on the average will be deeper when the
gas entered is only thinly populated, because the chance of a
collision is smaller. On the other hand, there will be more
collisions in a dense than in a less dense gas. On balance, then,
the momentum conveyed across each unit area per second re-
mains the same regardless of density, and so the coefficient of
viscosity is not altered by varying the density.

These results, coupled with others arrived at in the same
paper, made it possible for Maxwell to picture a mechanical
model of phenomena and reiationships hitherto imperfectly
understood. The various properties of a gas — diffusion, vis-
cosity, heat conduction — could row be explained in precise
quantitative terms. All are shown to be connected with the
motion of crowds of particles “carrying with them their mo-
menta and their energy,” traveling certain distances, colliding,
changing their motion, resuming their travels, and so on. Alto-
gether it was a scientific achievement of the first rank. The
reasoning has since been criticized on the ground, for exam-
ple, that molecules do not possess the tiny-billiard-ball prop-
erties Maxwell ascribed to them; that they are neither hard,
nor perfectly elastic; that their interaction is not confined
to the actual moment of impact. Yet despite the inadequacies
of the model and the errors of reasoning, the results that, as
Sir James Jeans has said, “ought to have been hopelessly
wrong,” turned out to be exactly right, and the formula tying

the relationships together is in use to this day, known as Max-
well’s law.*

* “Maxwell, by a train of argument which seems to bear no relation at all to
molecules, or to the dynamics of their movements, or to logic, or even to ordi-
nary common sense, reached a formula which, according to all precedents and
all the rules of scientific philosophy ought to have been hopelessly wrong. In
actual fact it was subsequently shown to be exactly right. . . .” (James Jeans,
“Clerk Mexwell's Method,” in James Clerk Maxwell, A Commemoration Vol-
ume, 1831-1931, New York, 1931.)
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This is perhaps a suitable place to add a few lines about
Maxwell’s later work in the theory of gases. Clausius, Max
Planck tells us, was not profoundly impressed by the law of
distribution of velocities, but the German physicist Ludwig
Boltzmann at once recognized its significance. He set to work
refining and generalizing Maxwell’s proof and succeeded,
among other results, in showing that “not only does the Max-
well distribution [of velocities] remain stationary, once it is
attained, but that it is the only possible equilibrium state, since
any system will eventually attain it, whatever its initial state.”*
This final equilibrium state; as b~*h men realized, is the ther-
modynamic condition of maximum entropy — the most dis-
ordered state, in which the least amount of energy is available
for useful work. But since this condition is.in the long run also
the most probable, purely from the mathematical standpoint,
one of the great links had been forged in modern science be-
tween the statistical law of averages and the kinetic theory of
matter.

The concept of entropy led Maxwell to one of the celebrated
images of modern science, namely, that of the sorting demon.
Statistical laws, such as the kinetic theory of gases, are good
enough in their way, and, at any rate, are the best man can
arrive at, considering his limited powers of observations and
understanding. Increasing entropy, in other words, is the ex-
planation we are driven to — and indeed our fate in physical
reality — because we are not very bright. But a demon more
favorably endowed could sort out the slow- and fast-moving
particles of a gas, thereby changing disorder into order and
converting unavailable into available energy. Maxwell imag-
ined one of these small, sharp fellows “in charge of a friction-
less, sliding door in a wall separating two compartments of a
vessel filled with gas. When a fast-moving molecule moves
from left to right the demon opens the door, when a'slow mov-
ing molecule approaches, he (or she) closes the door. The

* Max Planck, “Maxwell’s Influence on Theoretical Physics in Germany,” in
James Jeans, ibid.
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fast-moving molecules accumulate in the right-hand compart-
ment, and slow ones in the left. The gas in the first compart-
ment grows hot and that in the second cold.” Thus the demon
would thwart the second law of thermodynamics. Living or-
ganisms, it has been suggested, achieve an analogous success;
as Erwin Schrodinger has phrased it, they suck negative en-
tropy from the environment in the food they eat and the air
they breathe.

Maxwell and Boltzmann, working independently and in a
friendly rivalry, at first made notable progress in explaining
the behavior of gases by statistical mechanics. After a time,
however, formidable difficulties arose, which neither investi-
gator was able to overcome. For example, they were unable to
write accurate theoretical formulas for the specific heats of
certain gases (the quantity of heat required to in:part a unit
increase in iemperature to a unit mass of the gas at constant
pressure and volume) .* The existing mathematical techniques
simply did not reach— and a profound transformation of
ideas had to take place before physics could rise to — a new
level of understanding. Quantum theory — the far-reaching

* In order to resolve discrepancies between theory and experiment, as to the
viscosity of gases and its relationship to absolute temperature, Maxwell sug-
gested a new model of gas behavior, in which the molecules are no longer con.
sidered as elastic spheres of definite radius but as more or less undefined hodies
repelling one another inversely as the fifth power of the distance between the
centers of gravity. By this trick he hoped to explain observed properties of
gases and to bypass mathematical obstacles connected with computing the veloc-
ity of a gas not in a steady state. For, whereas in the case of hard elastic bodies
molecular collisions are a discontinuous process (each molecule retaining its
velocity until the moment of impact) and the computation of the distribution
of velocities is essential in solving questions of viscosity, if the molecular inter.
action is by repulsive force, acting very weakly when the molecules are far away
from each other and strongly when they approach closely, each collision may be
conceived as a -apid but continuous transition from the initial to the final veloc-
ity, and the cemputation both of relative velocities of the colliding molecules
and of the velocity distribution of the gas as a whole can be dispensed with. In
his famous memoir On the Dynamical Theory of Gases, which appeared in 1866,
Maxwell gave a beautiful mathematical account of the properties of such a sys-
tem. The memoir inspired Boltzmann to a Wagnerian rapture. He compared
Maxwell’s theory to a musical drama: “At first are developed majestically the
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system of thought revolving about Planck’s universal constant,
h — was needed to deal with the phenomena broached by
Maxwell and Boltzmann.* The behavior of microscopic par-
ticles eluded description by classical methods, classical con-
cepts of mass, energy and the like; a finer mesh of imagination
alone would serve in the small world of the atom. But neither
quantum theory, nor relativity, nor the other modes of thought
constituting the twentieth-century revolution in physics would -
have been possible had it not been for the brilliant labors of
these natural philosophers in applying statistical methods to

the study of gases. ;
L] Variations of the Velocities, then from one side enter the Equations of State, 2
from the other the Equations of Motion in a Central Field; ever higher swoops M
the chaos of Formulae; suddenly are heard the four words: ‘Put n =35'. The %
evil spirit V (the relative velocity of two molecules) vanishes and the dominat- K
ing figure in the bass is suddenly silent; that which had seemed insuperable :
being overcome as if by a inagic stroke - . . result after result is given by the -
pliant formula till, as unexpected climax, comes the Heat Equilibrium of a 3
heavy gas; the curtain then drops.” -
Unfortunately, however, the descent of the curtain did not, as Boltzmann had -2
supposed, mark a happy ending. For as James Jeans points out, “Maxwell’s be- #
lief that the viscosity of an actual gas varied directly as the absolute tempera- I
ture proved to have been based on faulty arithmetic. and the conclusions he
drew from his belief were vitiated by faulty algebra.” [Jeans, op. cit.] It was, N
says Jeans, “a very human failing, which many of us will welcome as a bond of 2
union between ourselves and a really great mathemnatician” — even though the 7
results were disastrous. %
* Explanation of the discrepancies they found had to await tlie development of ;
quantum theory, which showed that the spin and vibration of molecules were m{.
restricted to certain values. s
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Throughout history, there have been men who endeavored
to design machines that produce energy from nothing.

All their efforts have been thwarted by the law of con-
servation of energy. But why not a machine that ex-
tracts unlimited energy by cooling its surroundings?

Unless Maxwell's Demon intervenes, this machine is
highly improbable.

Maxwell‘’s Demon

George Gamow

1965




Maxwell’s Demon

‘I've read something somewhere about such hypothetical
machines—perpetual motion machines, I believe they are called’
said Mr Tompkins. ‘If I remember correctly, machines planned
to run without fuel are considered impos:ible because one cannot
manufacture energy out of nothing. Anyway, such machines
have no connection with gambling.’ '

“You are quite right, my boy,” agreed the professor, pleased
that his son-in-law knew something at least about physics. ‘ This
kind of perpetual moticn, * perpetual motion machines of the first
type” as they are called, cannot exist because they would be con-
trary to the law of the Conservation of Energy. However the
fuel-less machines I have in mind are of a rather different type and
are usually known as ** perpetual motion machines of the second
type”’. They are not designed to create energy out of nothing, but
to extract energy from surrounding heat reservoirs in the earth,
sea or air. For instance, you can imagine a steamship in whose
boilers steam was gotten up, not by burning coal but by extract-
ing heat from the surrounding water. In fact, if it were possible to
force heat to flow away from cold toward greater heat, instead of
the other way round, one could construct a system for pumping in
sea-water, depriving it of its heat content, and disposing of the
residue blocks of ice overboard. When a gallon of cold water
freezes into ice, it gives off enough heat to raise another gallon of
cold water almost to the boiling point. By pumping through
several gallons of sea-water per minute, one could easily collect
enough heat to runagood-sized engine. Forall practical purposes,
such a perpetual motion machine of the second type would be just
as good as the kind designed to create energy out of nothing,
With engines like this to do the work, everyone in the world could
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‘live as carefree an existence as a man with an unbeatable roulette

svstem. Unfortunately they are equally impossible as they both
* .oiate the laws of probability in the same way.’

‘I admit that trying to extract heat out of sea-water to raise
steam in a ship’s boilers is a crazy idea,’ said Mr Tompkins. ‘How-
ever, I fail to see any connexion between that problem and the
laws of chance. Surely, you are not suggesting that dice and
roulette wheels should be used as moving parts in these fuel-less
machines. Or are you?’

‘Of course not !’ laughed the professor. ‘At least I don’t believe
even the craziest perpetual motion inventor has made that sugges-
tion yet. The point is that heat processes themselves are very
similar in their nature to games of dice, and to hope that heat will
flow from the colder body into the hotter one is like hoping that
money will flow from the casino’s bank into your pocket.’

"You mean that the bank is cold and my pocket hot?’ asked
Mr Tompkins, by now completely befuddled.

‘In a way, yes,” answered the professor. ‘If you hadn’t missed
my lecture last week, you would know that heatiis nothing but the
rapid irregular movement of innumerable particles, known as
atoms and molecules, of which all material bodies are constituted.
The more violent this molecular motion is, the warmer the body
appears to us. As this molecular motion is quite irregular, it is
subject to the laws of chance, and it is easy to show that the most
probable state of a system made up of a large number of particles
will correspond to a more or less uniform distribution among all
of them of the total available energy. If one part of the material
body is heated, that is if the molecules in this region begin to move
faster, one would expect that, through a large number of acciden-
tal collisions, this excess energy would soon be distributed evenly
among all the remaining particles. However, as the collisions are
purely accidental, there is also the possibility that, merely by
chance, a certain group of particles may collect the larger part of
the available energy at the expense of the others. This spon-
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taneous concentration of thermal energy in one particular part of
the body would correspond to the flow of heat against the tem-
perature gradient, and is not excluded in principle. However, if
one tries to calculate the relative probability of such a spontaneous
heat concentration occurring, one gets such ¢mall numerical
values that the phenomenon can be labelled as practically
impossible.’
‘Oh, I see it now,” said Mr Tompkins. ‘ You mean that these
perpetual motion machines of the second kind might work once in
a while but that the chances of that happening are as slight as they
are of throwing a seven a hundred times in a row in a dice game.’
*The odds are much smaller than that,’ said the professor. ‘In
fact, the probabilities of gambling successfully against nature are
so slight that it is difficult to find words to describe them. For
- instance, I can work out the chances of all the air in this room col-
lecting spontaneously under the table, leaving an absolute vacuum
everywhere else. The number of dice you would throw at one
time would be equivalent to the number of air molecules in the
room, so I must know how many there are. One cubic centimetre
of air at atmospheric pressure, I remember, contains a number of
molecules described by a figure of twenty digits, so the air
molecules in the whole room must total a.number with some
twenty-seven digits. The space under the table is about one per
P cent of the volume of the room, and the chances of any given mole-
cule being under the table and not somewhere else are, therefore,
one ina hundred. So, to work out the chances of all of them being
under the table at once, I must multiply one hundredth by one
hundredth and so on, for each molecule in the room. My result
will be a decimal beginning with fifty-four noughts.’

‘Phew. . . !’ sighed Mr Tompkins, ‘I certainly wouldn’t bet on
those odds! But doesn’t all this mean that deviations from equi-
parition are simply impossible?’

‘Yes,’ agreed the professor. ‘You can take it as a fact that we
won'’t suffocate because all the air is under the table, and for that
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matter that the liquid won’t start boiling by itself in your high-ball
glass. But if you consider much smaller areas, containing much
smaller numbers of our dice-molecules, deviations from statistical
distribution become much more probable. In this very room, for
instance, air molecules habitually group themselves somewhat
more densely at certain points, giving rise to minute inhomc-
geneities, called statistical fluctuations of density. When the sun’s
light passes through terrestrial atmosphere, such inhomogeneities
cause the scattering of the blue rays of spectrum, and give to the
sky its familiar colour. Were these fluctuations of density not
present, the sky would always be quite black, and the stars would
be clearly visible in full daylight. Also theslightly opalescent light
liquids get when they are raised close to the boiling point is
explained by these same fluctuations of density produced by the
irregularity of molecular motion. But, on a large scale, such
fluctuations are so extremely improbable that we would watch for
billions of years without seeing one.’

‘But there is still a chance of the unusual happening right now
in this very room,’ insisted Mr Tompkins. ‘Isn’t there?’

‘Yes, of course there is, and it would be unreasonable to insist
that a bowl of soup couldn’t spill itself all over the table cloth
because half of its molecules had accidentally received thermal
velocities in the same direction.’

“Why that very thing happened only yesterday,” chimed in
Maud, taking an interest now she had finished her magazine. *The
soup spilled and the maid said she hadn’t even touched the table.’

The professor chuckled. ‘In this particular case,’ he said,
‘I'suspect the maid, rather than Maxwell’s Demon, was to blame.’

‘Maxwell’s Demon?’ repeated Mr Tompkins, surprised.
“I'should think scientists would be tke last people to get notions
about demons and such.’ _

‘“Well, we don’t take him very setiously,’ said the professor.
‘CLERK MAXWELL, the famous physicist, was responsible for
introducing the notion of such a statistical demon simply as a




figure of speech. He used this notion to illustrate discussions on
the phenomena of heat. Maxwell’s Demon is supposed to be
rather a fast fellow, and capable of changing the direction of every
single molecule in any way you prescribe. If there really were
such a demon, heat could be made to flow against temperature,
and the fundamental law of thermodynamics, the principle of
increasing entropy, wouldn't be worth a nickel.’

‘Entropy?’ repeated Mr Tompkins. ‘I've heard that word
before. One of my colleagues once gave a party, and after a few
drinks, some chemistry students he’d invited started singing—

‘ Increases, decreases
Decreases, increases
What the hell do we care
What entropy does?’

to the tune of “Ach du lieber Augustine”. What is entropy
anyway?’

“It’s not difficult to explain. *Entropy” is simply a term used to
describe the degree of disorder of molecular motion in any given
physical body or system of bodies. The numerous irregular col-
lisions between the molecules tend always to increase the entropy,
as an absolute disorder is the most probable state of any statistical
ensemble. However, if Maxwell’s Demon could be put to work,
he would soon put some orderinto the movement of the molecules
the way a good sheep dog rounds up and steers 2 flock of sheep,
and the entropy would begin to decrease. 1 should also tell you
that according to the so-called H-theorem Ludwig Boltzmann
introduced to science. ...’

Apparently forgetting he was talking to a man who knew prac-
tically nothing about physics and not to a class of advanced
students, the professor rambled on, using such monstrous terms as
‘ generalized parameters’ and ‘ quasi-ergodic systems’, thinking he
was making the ;.. Jamental laws of thermodynamics and . .eir
relation to Gibbs' forni of statistical mechanics crystal clear.
Mr Tompkins was used to his father-in-lew talking over his head,

Maxwell’s Demon




so he sipped his Scotch and soda philoscphically and tried to
look intelligent. But all these highlights of statistical physics
were definitely too much for Maud, curled up in her chair and
struggling to keep her eyes open. To throw off her drowsi-
ness she decided t¢  and see how dinner was getting along.

‘Does madam desne something?’ inquired a tall, elegantly
dressed butler, bowing as she came into the dining room.

“No, just go on with your work,” she szid, wondering why on
earth he was there. It seemed particularly odd as they had never
had a butler and certainly could not afford one. The man was tall
and lean with an olive skin, long, pointed nose, and greenish eyes
which seemed to burn with a strange, intense glow. Shivers ran
up and down Maud’s spine when she noticed the two symmetrical
lumps half hidden by the black hair above his forehead.

‘Either I'm dreaming,’ she thought, ‘or this is Mephistopheles
himself, straight out of grand opera.’

‘Did my husband hire you?” she asked aloud, just for some-
thing to say.

‘Not exactly,’ answered the strange butler, giving a last artistic
touch to the dinner table. ‘Asa matter of fact, I came here of my
own accord to show your distinguished father I am not the myth
he believes me to be. Allow me to introduce myself. I am
Maxwell’s Demon.’

‘Oh !’ breathed Maud with relief, ‘ Then you probably aren’t
wicked, like other demons, and have no intention of hurting
anybody.’ .

“Of course not,’ said the Demon with a broad smile, ‘but I like

o play practical jokes and I’m about to play one on your father.”

‘What are you going to do?’ asked Maud, still not quite

eassured.

‘Just show him that, if I choose, the law of increasing entropy
can be broken. And to convince you it can be done, I would
appreciate the honour of your company. It is not at all dangerous,
I assure you.’
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Maxwell’'s Demon

At these words, Maud felt the strong grip of the Demon’s hand
on her elbow, and everything around her suddenly went crazy.
All the familiar objects in her dining room began to grow with
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‘Is this what hell looks like?’

terrific speed, and she got a last glimpse of the back of a chair
covering the whole horizon. When things finally quieted down,
she found herself floating in the air supported by her companion.
Foggy-looking spheres, about the size of tennis balls, were whiz-
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zing by in all directions, but Maxwell’s Demon cleverly kept them
from colliding with any of the dangerous looking things. Look-
ing down, Maud saw what looked like a fishing boat, heaped to the
gunwales with quivering, glistening fish. They were not fish,
however, but a countless number of foggy balls, very like those
flying past them in the air. The Demon led her closer until she
seemed surrounded by a sea of coarse gruel which was moving
and working in a patternless way. Balls were boiling to the surface
and-others seemed to be sucked down. Occasionally one would
come to the surface with such speed it would tear off into space, or
one of the balls flying through the air would dive into the gruel
and disappear under thousands of other balls. Looking at the
gruel more closely, Maud discovered that the balls were really of
two different kinds. If most looked like tennis balls, the larger
and more elongated ones were shaped more like American foot-
balls. All of them were semi-transparent and seemed to have a
complicated internal structure which Maud could not make out.
“Where are we?’ gasped Maud. ‘Is this what hell looks like?’
“No,’ smiled the Demon, ‘ Nothing as fantastic as that. We are
simply taking a close look at a very small portion of the liquid
surface of the highball which is succeeding in keeping your
husband awake while your father expounds quasi-ergodic systems.
All these balls are molecules. The smaller round ones are water
molecules and the larger, longer ones are molecules of alcohol. If
youcare to work out the proportion between their number, you can
find out just how strong a drink your husband poured himsel.’
‘ Very interesting,’ said Maud, as sternly as she dared. ‘But
what are those things over there that look like a couple of whales
playing in the water. They couldn’t be atomic whales, or could
they?’ -,
The demon looked where Maud pointed. “No, they are hardly
whales,” hesaid. ‘As a matter of fact, they are a couple of very fine
fragments of burned barley, the ingredient which gives whisky its
particular flavour and colour. Each fragment is made up of
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Maxwell’s Demon

millions and millions of complex organic molecules and is com-
paratively large and heavy. You see them bouncing around be-
cause of the action of impacts they receive from the water and
alcohol molecules animated by thermal motion. It was the study
of such intermediate-sized particles, small enough to be influenced
by molecular motion but still large enough to be seen through a
strong microscope, which gave scientists their first direct proof of
the kinetic theory of heat. By measuring the intensity of the

tarantella-like dance executed by such minute particles suspended
in liquids, their Brownian motion as it is usually called, physicists
were able to get direct information on the energy of molecular
motion.’

Again the Demon guided her through the air until they came to
an enormous wall made of numberless water molecules fitted
neatly and closely together like bricks.

‘How very impressive!’ cried Maud. ‘That’s just the back-
ground I've been looking for for a portrait I'm painting. What is
this beautiful building, anyway?’

“Why, this is part of an ice crystal, one of many in the ice cube
in your husband’s glass,’ said the Demon. ‘And now, if you will
excuse me, it is time for me to start my practical joke on the old,
self-assured professor.’
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So saying, Maxwell’s Demon left Maud perched on the edge of
the ice crystal, like an unhappy mountain climber, and set about
his work. Armed with an instrument like a tennis racquet, he was
swatting the molecules around him. Darting here and there, he
was always in time to swat any stubborn molecule which persisted
in going in the wrong direction. In spite of the apparent danger of
her position, Maud could not help admiring his wonderful speed
and accuracy, and found herself cheering with excitement when-
ever he succeeded in deflecting a particularly fast and difficult
molecule. Compared with the exhibition she was witnessing,
champion tennis players she had seen looked like hopeless duffers.
In a few minutes, the results of the Demon’s work were quite
apparent. Now, although one part of the liquid surface was
covered by very slowly moving, quiet molecules, the part directly
under her feet was more furiously agitated than ever. The number
of molecules escaping from the surface in the process of evapora-
tion was increasing rapidly. They were now escaping in groups of
thousands together, tearing through the surface as giant bubbles.
Then a cloud of steam covered Maud’s whole field of vision and
she could get only occasional glimpses of the whizzing racquet or
the tail of the Demon’s dress suit among the masses of maddened
molecules. Finally the molecules in her ice crystal perch gave way
and she fell into the heavy clouds of vapour beneath. . ..

When the clouds cleared, Maud found herself sitting in the
same chair she was sitting in before she went into the dining room.

‘Holy entropy!” her father shouted, staring bewildered at
Mr Tompkins® highball. ‘1t’s boiling !’

The liquid in the glass was covered with violently bursting
bubbles, and a thin cloud of steam was rising slowly toward the
ceiling. It was particularly odd, however, that the drink was
boiling only in a comparatively small area around the ice cube.
The rest of the drink was still quite cold.

“Think of it!” went on the professor in an awed, trembling
voice. ‘Here I was telling you about statistical fluctuations in the
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law of entropy when we actually see one! By some incredible
chance, possibly for the first time since the earth began, the faster
molecules have all grouped themselves accidentally on one part of
the surface of the water and the water has begun to boil by itself!

‘Holy entropy! It's boiling!’

In the billions of years to come, we will still, probably, be the only
people who ever had the chance to observe this extraordinary
phenomenon.” He watched the drink, which was now slowly
cooling down. ‘ What a stroke of luck!” he breathed happily.
Maud smiled but said nothing. She did not care to argue with x
her father, but this time she felt sure she knew better than he.
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Randomness and The Twentieth Century

Alfred M. Bork

1967

B As I write this I have in front of me a book that mzy be un-
familiar to many. It is entitled One Million Random Digits with
1,000 Normal Deviates and was produced by the Rand Corporation
in 1955. As the title suggests, each page contains digits—numbers
from 1 to 9g—arranged as nearly as possible in a completely random
fashion. An electronic roulette wheel generated the numbers in this
book, and afterwards the numbers were made even more random by
shufling and other methods. There is a careful mathematical defini-
tion of randomness, and associated with it are many tests that one
can apply. These numbers were shuffed until they satisfied the tests.

I want to use this book as a beginning theme for this paper. The
production of such a book is entirely of the twentieth century. It
could not have been produced in any other era. I do not mean to
stress that the mechanism for doing it was not available, although
that is also true. What is of more interest is that before the twentieth-
century no one would even have thought of the possibility of pro-
ducing a book like this; no one would have seen any use for it.
A rational nineteenth-century man would have thought it the height
of folly to produce a book containing only random numbers. Yet
such a book is important, even though it is not on any of the usual
lists of one hundred great books.
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That this book /s strictly of the twentieth century is in itself of
importance. I claim that it indicates a cardinal feature of our cen-
tury: randomness, a feature permeating many different and appar-
ently unrelated aspects of our culture. I do not claim that randomness
is the only feature which characterizes and separates twentieth-
century thought from earlier thought, or even that it is dominant,
but I will argue, admittedly on a speculative basis, that it is an
important aspect of the twentieth century.

Before I leave the book referred to above, you may be curious
to know why a collection of random numbers is of any use. The
Rand Corporation, a government-financed organization, is not likely
to spend its money on pursuits having no possible application. The
principal use today of a table of random numbers is in a calcula-
tional method commonly used on large digital computers. Because
of its use of random numbers, it is called the Monte Carlo method,
and it was developed primarily by Fermi, von Neumann, and Ulam
at the end of the Second World War. The basic idea of the Monte
Carlo method is to replace an exact problem which cannot be solved
with a probabilistic one which can be approximated. Another area
where a table of random numbers is of importance is in designing
experiments, particularly those involving sampling. If one wants,
for example, to investigate certain properties of wheat grown in a
field, then one wants thoroughly random samplings of wheat; if all
the samples came from one corner of the field, the properties found
might be peculiar to that corner rather than to the whole field.
Random sampling is critical in a wide variety of situations.

Actually, few computer calculations today use a table of random
numbers; rather, a procedure suggested during the early days of
computer development by John von Neumann is usually followed.
Von Neumann’s idea was to have the computer generate its own
random numbers. In a sense numbers generated in this way are not
“random,” but they can be made to satisfy the same exacting tests
applied to the Rand Table; randomness is a matter of degree. It is
more generally convenient to let the computer produce random
numbers than to store in the computer memory a table such as the
Rand Table. Individual computer centers often have their own
methods for generating random numbers.

I shall not give any careful definition of randomness, but shall
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rely on intuitive ideas of the term. A formal careful definition would
be at odds with our purposes, since, as A. O. Lovejoy noted in The
Great Chain of Being, it is the vagueness of the terms which allows
them to have a life of their own in a number of different areas. The
careful reader will notice the shifting meanings of the word “ran-
dom,” and of related words, in our material.

However, it may be useful to note some of the different ideas
connected with randomness. D. M. Mackay, for example, distin-
guishes between “(a) the notion of well-shuffledness or impartiality
of distribution; (b) the notion of 7rrelevance or absence of correla-
tion; (c) the netion of ‘I don’t care’; and (d) the notion of chaos™
Although this is not a complete, mutually exclusive classification—
the editor of the volume in which it appears objects to it—the classi-
fication indicates the range of meaning that “random” has even
in well-structured areas like information theory.

Let us, then, review the evidence of randomness in several
areas of twentieth-century work, and then speculate on why this
concept has become so pervasive, as compared with the limited use
of randomness in the nineteenth century.

I begin with the evidence for randomness in twentieth-century
physics. There is no need to search far, for the concept helps to
separate our physics from the Newtonian physics of the last few
centuries, Several events early in this century made randomness
prominent in physics. The first was the explanation of Brownian
motion. Brownian movement, the microscopically observed motion
of small suspended particles in a liquid, had been known since the
early 1800's. A variety of explanations had been proposed, all un-
satisfactory. But Albert Einstein showed, in one of his three famous_
papers of 1905, that Brownian motion could be understood in
terms of kinetic theory:

.+ . it will be shown that according to the molecular-kinetic theory of
heat, bodies of microscopically visible size, suspended in a liquid, will
perform movements of such magnitude that they can be easily observed

Donald M. Mackay, “Theoretical Models of Space Perception~—Appendix,”
in “Aspects of the Theory of Artificial Intelligence,” The Proceedings of the
First International Symposium of Biosimulation, edited by C. A. Muses
(Plenium Press, New York, 1962), p. 240.




in a microscope on account of the molecular motions of heat. It is pos-
sible that the movements to be discussed here are identical with the
so-called “Brownian molecular motion.” . . . if the movement discussed
here can actually be observed . . . then classical thermodynamics can no
longer be looked on as applicable with precision to bodies even of di-
mensions distinguishable in a microscope. . . . On the other hand
[if] the prediction of this movement proves to be incorrect, weighty
argument would be provided against the molecularkinetic theory
of heat.?

It is the randomness of the process, often described as a “random
walk,” which is the characteristic feature of Brownian motion.

But an even more direct experimental situation focused atten-
tion on randomness. During the last years of the nineteenth century,
physicists suddenly found many new and strange “rays” or “radia-
tions,” including those from radioactive substances. A series of ex-
perimental studies on alpba-rays from radioactive elements led
Rutherford to say in 1912 t":at “The agreement between theory and
experiment is excellent and indicates that the alpha particles are
emitted at random and the variations accord with the laws of
prooability.” These radiations were associated with the core of the
atom, the nucleus, so randomness was present in the heart of matter.

One of the two principal physical theories developed in the
past forty years is the theory of atomic structure, quantum mechan-
ics, developed during the period from 1926 to 1930. Wave mechanics,
the form of quantum mechanics siggested by the Austrian physicist
Erwin Schrédinger, predicted in its original form only the allowable
energy levels and hence the spectroscopic lines for an atom of some
particular element. Later, Max Born and Werner Heisenberg gave
quantum theory a more extensive interpretation, today called the
“Copenhagen Interpretation,” which relinquishes the possibility of
predicting exactly the outcome of an individual measurement of an
atomic (or molecular) system. Instead, statistical predictions tell
what, on the average, will happen if the same measurement is per-
formed on a large number of identically prepared systems. Identical

2Albert Einstein, Investigations on the Theory of Brownian Movement, edited
by R. Fiirth, translated by A. A. Cowper (E. P. Dutton, New York).

*E. Rutherford, Radioactive Substances and their Radiations (Cambridge Uni-
versity Press, Cambridge, 1913), p. 191.
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measurements on identically prepared systems, in this view, do not
always give the same result. Statistical ideas had been used in the
nincteenth-century physics, but then it was always assumed that the
basic laws were completely deterministic. Stutistical calculations
were made when one lacked complete information or because of
the complexity of the system involved. In the statistical interpre-
tation of quantum mechanics I have just described, however, ran-
domness is not accepted purely for calculational purposes. It is a
fundamental aspect of the basic physical laws themselves. Although
some physicists have resisted this randomness in atomic physics, it
is very commonly maintained. A famous principle in contemporary
quantum mechanics, the “uncertainty principle,” is closely related
to this statistical view of the laws governing atomic systems.

These examples illustrate randomness in physics; now we pro-
ceed to other areas. Randomness in art is particularly easy to discuss
because it has been so consistently and tenaciously used. My first
example is from graphic design. For hundreds of years books and
other publications have been “justified” in the margins in order to
have flush right margins in addition to flush left margins, This is
done by hyphenation and by adding small spaces between letters
and words. But recently there is a tendency toward books that are
not “justified”; the right margins end just where they naturally
end, with no attempt to make them even. This is a conscious design
choice. Its effect in books with two columns of print is to randomize
partially the white space between columns of print, instead of
maintaining the usual constant width white strip.

In the fine arts, the random component of assemblages, such
as those of Jean Tingucly, often lies in the use of “junk” in their
composition. The automobile junkyard has proved to be a particu-
larly fruitful source of material, and there is something of a random
selection there. Random modes of organization, such as the scrap-
metal press, have also been used.

In art, as elsewhere, one can sometimes distinguish two kinds
of randomness, one involving the creative technique and another
exploiting the aesthetic effects of randomness. We see examples of
this second type, called “accident as a compositional principle” by
Rudolf Arnheim, in three woodcuts by Jean Arp, entitled “Placed
According to the Laws of Chance.” We would perhaps not have
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understood the artist’s intent if we did not have the titles. Arp,
like other contemporary artists, has returned repeatedly to the ex-
ploration of such random arrangemeats. As James Thrall Soby
says, “There can be no doubt that the occasional miracles of accident
have particular meaning for him. . , . One assumes that he considers
spontaneity a primary asset of art.™

An area which has been particularly responsive to the explora-
tion of randomness for aesthetic purposes is “op art.” Again the titles
often identify this concept, as in “Random Field” by Wen-Yin Tsai.

Perhaps more common, however, is the former aspect, an
artistic technique by which the artist intentionally employs some
random clement. The contemporary school of action painting is
an example. Jackson Pollock often would place his canvas on the
ground and walk above it allowing the paint to fall several feet
from his brush to the canvas. Soby describes it as follows: “Pol-
lock’s detractors call his current painting the ‘drip’ or ‘spatter’
school, and it is true that he often spreads large canvases on the floor
and at them flings or dribbles raw pigments of various colors.”® With
this method he did not have complete control of just where an
individual bit of paint fell—this depended in a complicated way on
the position of the brush, the velocity of the brush, and the con-
sistency of the paint. Thus this technique had explicit chance ele-
ments, and its results have been compared to Brownian motion.

Similarly, J. R. Rierce, in Symbols, Signals, and Noise, dis-
cussing random elements in art, gives some examples of computer-
generated art. He emphasizes the interplay of “both randomness
and order” in art, using the kaliedoscope as an example.

I will comment even more briefly on music. In Percy Granger's
“Random Round” each instrument has a given theme to play;
the entrances are in sequence, but each player decides for him-
self just when he will enter. Thus cach performance is a unique
event, involving random choices. The most famous example of
random musical composition is the work of John Cage. One of
his best known works involves a group of radios on a stage, each

*James Thrall Soby, Arp (Museum of Modern Art, New York, 1958).

3James Thrall Soby, “Jackson Pollock,” in The New Art in America (Fred-
erick Praeger, Inc., Greenwich, Conn., 1957).
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with a person manipulating the controls. They work independently,
each altering things as he wishes, and the particular performance is
further heavily dependent on what programs happen to be playing
on the local radio stations at the time of the performance. There is
no question that Cage furnishes the most extreme example of ex-
ploitation of techniques with a chance component.

Most evidence for randomness in literature is not as clear as
in science, art, or music. The first example is clear, but perhaps
some will not want to call it literature at all. In 1965 two senior
students at Reed College saw some examples of computer-produced
poetry and decided that they could do as well. As their model was
symbolist poetry, they did not attempt rhyme or meter, although
their program might be extended to cover either or both. The com-

. puter program is so organized that the resulting poem is based on
a series of random choices. First, the computer chooses randomly
a category—possibilities are such themes as “sea” or “rocks.” The
program then selects (again using a built-in random number gen-
erator) a sentence structure from among twenty possibilities. The
sentence structure coriains a series of parts of speech. The com-
puter randomly puts words into it, keeping within the previously
chosen vocabulary stored in the computer memory. Because of the
limited memory capacity of the small computer available, only
five words occur in a given thematic and grammatical category.
There are occasionally some interesting products.

Turning from a student effort to a recently available commercial
product, consider the novel Composition I by Marc Saporta, which
comes in a box containing a large number of separate sheets. Each
‘page concludes with the end of a paragraph. The reader is told to
shuffle the pages before beginning to read. Almost no two readers
will see the pages in the same order, and the ordering is deter-
mined in a random process. For some readers the girl is seduced
before she is married, for other readers after she is married. A
similar process has been used by William Burroughs in The Naked
Lunch and elsewhere, except that in this case the shuffling is done
by the writer himself. Burroughs writes on many separate pieces
of paper and then orders them over and over in different ways
until he is satisfied with the arrangement. He has suggested that
his work can be read in other orders, and ends The Naked Lunch
with an “Atrophied Preface.”




P. Mayersburg® has pointed out elements of chance construction
in several other writers’ work. He says of Michel Botor: “Mobile is
constructed around coincidence: coincidence of nares, places, signs,
and sounds. . . . Coincidence implies the destruction of traditional
chronology. It replaces a pattern of cause and effect with one of
chance and accident.” He sees another chance aspect in these writers:
they recognize that they cannot completely control the mind of
the reader.

But can we find examples in the work of more important
writers? The evidence is less direct. While contemporary artists
have openly mentioned their use of randomness, contemporary
writers and critics, with a few exceptions, have seldom been willing
to admit publicly that randomness plays any role in their writings.
But I will argue that randomness is nevertheless often there, al-
though I am aware of the difficuly of establishing it firmly.

The cubist poets, perhaps because of their associations with
artists, did experiment consciously with randomness. The story is
told of how Apollinaire removed all the punctuation from the proofs
of Alcools because of typesetting errors, and he continued to use
random crganization in his “cons ersation poems” and in other work.

The “opposite of narration” defines the very quality Apollinaire finally
grasped in following cubism into the experimental work of Delaunay, the
quality he named simultanism. It represents an effort to retain a moment
of experience without sacrificing its logically unrelated variety. In poetry
it also means an effort to neutzalize the passage of time involved in the act
of reading. The fragments of a poem are deliberately kept in a random
order to be reassembled in a single instant of consciousness.?

It can be argued that James Joyce used random elements in
Ulysses and Finnegans Wake. Several minor stories at least indicate
that Joyce was not unfriendly toward the use of random input. For
example, when Joyce was dictating to Samuel Beckett, there was a
knock at the door. Joyce said, “Come in,” and Beckett wrote down,
“Come in,” thinking that it was part of the book. He immediately

——

°P, Mayersberg, “The Writer as Spaceman,” The Listener, October 17, 1963,
p. 07. )

"Roger Shattuck, The Banques Years (Harcourt, Brace, and Co., New York),
p. 238.
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realized that Joyce had not intended to dictate it; but when he
started to erase it, Joyce insisted that it should stay. And it is
still there in Finnegans Wake, because of a chance occurrence. A
related comment is made by Budgin in James Joyce and the Making
of Ulysses: “.. . he was a great believer in his luck. What he needed
would come to him.”

Proceeding from such stories to Joyce's books, I believe that
there are random elements in the vocabulary itself. It is well known
that much of the vocabulary of Finnegans Wake differs from the
vocabulary of other English-language books. Some of the words are
combinations of other better-known English words, and others are
traceable to exotic sources. I do not think that Joyce constructed
every new word carefully, but rather that he consciously explored
randomly or partally randomly formed words. There is some
slight tradition for this procedure in such works as “Jabberwocky.”

Another aspect of Joyce’s writing, shared with other works of
contemporary literature, also has some connection with our theme,
although this connection is not generally realized. I refer to the
“stream of conscious* css” organization. The Victorian novel was
ordered in a linear time sequence; there were occasional flashbacks,
but mostly the ordering of events in the novel was chronological.
The stream of consciousness novel does not follow such an order,
but instead the events are ordered as they might be in the mind of
an individual. This psychological ordering has distinctly random
clements. Finnegans Wake has been interpreted as one night in the
mental life of an individual. I would not claim that our conscious
processes are completely random, but I think it is not impossible to
see some random clements in-them

We mentioned that it has not been customary to admit that
randomness is a factor in contemporary literature. Much of the
critical literature concernir.y Joyce exemplifies this. But at least one

study sees Joyce as using random components: R. M. Adams’ Surface
and Symbol—the Consistency of James Joyce’s Ulysses® Adams
relates the story of the “come in” in Finnegans Wake, and he tells
of Joyce's requesting “any God dam drivel you may remember” of

8R. M. Adams, Surface and Symbol—The Consistency of James loyce's Ulysses
(Oxford University Press, New York, 1952).
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forces on each other and on the walls of the container. To know
the positions and velocities of a!l the particles was impossible because
of the multitude of particles; ordinary quantities of gas contained
10“—one followed by twenty-four zeros—particles. This lack of
complete information made it necessary to use general properties
such as energy conservation in connection with probabiiity con-
siderations. One could not predict where each particle would be,
but one could predict average behavior and relate this behavior to
observed thermodynamical quantities. Thus statistical thermody-
namics introduced statistical modes of thought to the physicist; but
the underlying laws were still considered to be deterministic.

A fundamental quantity in thermodynamics, entropy, was
found to have a simple statistical interpretation: it was the measure
of the degree of randomness in a collection of particles, Entropy
could be used as the basis of the most elegant formulation of the
second law of thermodynamics: in a closed system the entropy
always increases, or the degree of randomness tends to increase.

A special series of technical problems developed over the two
kinds of averaging used in statistical considerations: time-averaging,
inherently involved in all measurements; and averaging over many
different systems, the ensemble averaging of Gibbs used in the cal-
culations. The “ergodic theorems” that were extensively developed
to show that these two averages were the same again forced careful
and repeated attention on probabilistic considerations.

My second examnple is the theory of evolution, almost universally
acknowledged as the major intellectual event of the last century.
Charles Darwin and Alfred Russell Wallace developed the theory
independently, using clues from Malthus’ essay on population. The
basic ideas are well known, Organisms vary, organisms having the
fittest variations survive, and these successful variations are passed
on to the progeny. The random element of evolution is in the “nu-
merous successive, slight favorable variations”; the offspring differ
slightly from the parents. Darwin, lacking an acceptable theory of
heredity, had little conception of how these variations come about;
he tended to believe, parallel to the developers of statistical thermo-
dynamics, that there were exact laws, but that they were unknown.

I have hitherto sometimes spoken as if the variations . . . had been due
to chance. This, of course, is a wholly incorrect expression, but it seems
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to acknowledge plainly our ignorance of the cause of each particular
variation.!?

But others were particularly disturbed by the chance factors ap-
parently at work in variations. This was one of the factors that led
Samuel Butler from his initial praise to a later critical view of
Darwin. Sir John Herschel was very emphatic:

We can no more accept the principle of arbitrary and casual variation
and natural selection as a sufficient account, per se, of the past and present
organic world, than we can receive the Laputian method of composing
books . . . as a sufficient one of Shakespeare and the Principia1

When a usable theory of heredity was developed during the next
half century, randomness played a major role, both in the occur-
rence of mutations in genes and in the genetic inheritence of the
offspring. So, almost in spite of Darwin, chance became increasingly
important in evolutionary theory. “. . . The law that makes and loses
fortunes at Monte Carlo is the same as that of Evolution.”*?

The theory of evolution roused almost every thinking man in
the late nuicteenth century. Frederick Pollock, writing about the
important British mathematician William Kingdon Clifford, says:

For two or three years the knot of Cambridge friends of whom Clifford
was a leading spirit were carried away by a wave of Darwinian en-
thusiasm: we seemed to ride triumphant on an ocean of new life and
boundless possibilities. Natural selection was to be the master-key of the

universe; we expected it to solve all riddles and reconcile all contra-
dictions.1®

This is only one account outside biology, but it illustrates how evo-
lution affected even those not directly concerned with it as a scientific
theory. It does not scem unreasonable, then, that at the same time
evolution contributed to the new attitude toward randomness. I

10C, Darwin, Origin of the Species (first edition), p. 114.

11Sir Herschel, Physical Geography of the Globe (Edinburgh, 1861), quoted .
in John C. Green, The Death of Adam (New Ametican Library, New York), )
p. 296.

13M. Hopkins, Chance and Error—The Theory of Evolution (Kegan Paul,
Trench, Truber & Co., London, 1923).

18W, K. Clifford, Lectures and Essays (Macmillan, London, 1886), Intro-

duction.
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might also mention two other books that are particularly interesting
in showing the influence of evolution outside the sciences, offering
details we cannot reproduce here. One is Leo ]. Henkin’s Darwinism
in the English Novel 1860-1910; the other is Alvar Elleghrd’s Dar-
win and the General Reader.

There were of course other things happening in the nineteenth
century, but these two developments were important and had far-
reaching implications outside of their immediate areas. Alfred
North Whitehead, in Science and the Modern World, claims that in
the nineteenth century “four great novel ideas were introduced into
theoretical science.” Two of these ideas were energy, whose rise
in importance was related to thermodynamics, and evolution. It was
consistent with established tradition, however, to believe that the
use of chance in these areas was not essential. Other non-scientific
factors were also important; for example, Lord Kelvin’s attitude
toward chance was colored by religious considerations. In S. P.
Thomson’s Life we find a speech of his in the Times of 1903 arguing
that “There is nothing between absolute scientific belief in Creative
Power and the acceptance of the theory of a fortuitous concourse of
atoms.”

According to our splash in the puddle theory, we should be able
to point out evidence that two nincteenth-century developments,
statistical mechanics and evolution, had very far-reaching effects in
areas quite different from their points of origin, effects reflecting
interest in randomness. This is a big task, but we will attempt to
give some minimal evidence by looking at the writings of two
important American intellectuals near the turn of the century, both
of whom were consciously influenced by statistical mechanics and
Darwinian evolution. The two are Henry Adams and Charles
Sanders Peirce.

We have Adams’ account of his development in The Education
of Henry Adams. Even a casnal glance shows how much of the
language of physics and biology occurs in the book, and how often
references are made to those areas. Chapter 15 is entitled “Dar-
winism,” and early in the chapter he says:

The atomic theory; the correlation and conservation of energy; the
mechanical theory of the universe; the kinetic theory of gases; and
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Darwin’s law of natural selection were examples of what a young man
had to take on trust.

Adams had to accept these because he was not in a position to argue
against them. Somewhat later in the book Adams comments, in his
usual third person:

He was led to think that the final synthesis of science and its ultimate
triumph was the kinetic theory of gases. . . . so far as he understood it,
the theory asserted that any portion of space is occupied by molecules of
gs, flying in right lines at velocities varying up to a mile a second, and
colliding with each other at intervals varying up to seventeen million
seven hundred and fifty thousand times a second. To this analysis—if
onc understood it right—all matter whatever was reducible and the enly
difference of opinion in science regarded the doubt whether a still deeper
analysis would reduce the atom of gas to pure motion.

And a few pages later, commenting on Karl Pearson’s “Grammar

of Science”:

The kinetic theory of gases is an assertion of ultimate chaos. In plain,
chaos was the law of nature; order was the dream of man.

Later, “Chaos was a primary fact even in Paris,” this in reference
to Henri Poincare’s position that all knowledge involves conven-
tional elements.

Of all Henry Adams’ writings, “A Letter to American Teachers
of History” is most consistently saturated with thermodynamical
ideas. This rg10 paper' begins with thermodynamics. It first men-
tions the mechanical theory of the universe, and then says:

Teward the middle of the Nincteenth Century—that is, about 1850—a
new school of physicists appeared in Europe . . . made famous by the
names of William Thomson, Lord Kelvin, in England, and of Clausius
and Helmholtz in Germany, who announced a second law of thermo-
dynamics,

He quotes the second law of thermodynamics in both the Thomson
and the Clausius forms. It is not always clear how seriously one is
to take this thermodynamical model of history.

About fifteen pages into “A Letter,” Darwin is presented as

“Henry Adams, The Degradation of the Democratic Dogma (Macmillan and
Co., New York, 1920), pp. 137-366.
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Meanwhile, the statistical method had, under that very name, been applied
with brilliant success to molecular physics. . . . In the very summer pre-
ceding Darwin’s publication, Maxwell had read before the British Asso-
ciation the first and most important of his researches on the subject. The
consequence was that the idea that fortuitous events may result in physical
law and further that this is the way in which these laws which appear
to conflict with the principle of conservation of energy are to be explained
had taken a strong hold upon the minds of all who are abreast of the
leaders of thought. [6.297]

Peirce is not reflecting the historical attitude of the physicists
who developed statistical thermodynamics but is reading his own
views back into this work.

So it is not surprising that chance plays a fundamental role in
Peirce’s metaphysics. Peirce generalized these ideas into a general
philosophy of three categories, Firstness, Secondness, and Thirdness.
These three terms have various meanings in his work, but a fre-
quent meaning of Firstness is chance. He was one of the first to
emphasize that chance was not merely for mathematical conven-
ience but was fundamental to the universe. He used the word
“Tychism,” from the Greek for “chance,” the “doctrine that absolute
chance is a factor in the universe.” [6.2000]

This view of the essential role of chance he opposed to the view
that universal necessity determined everything by fixed mechanical
laws, in which most philosophers of science in the late nineteenth
century still believed. In a long debate between Peirce and Carus
concerning this issue, Peirce says:

The first and most fundamental element that we have to assume is a

Freedom, or Chance, or Spontancity, by virtue of which the general vague

nothing-in-particular-ness that preceded the chaos tock on a thousand
definite qualities.

In “The Doctrine of Necessity” Peirce stages a small debate
between a believer in his position and a believer in necessity, to show
that the usual arguments for absolute law are weak. Everyday ex-
periences make the presence of chance in the universe almost
obvious:

The endless variety in the world has not been created by law. It is not

of the nature of uniformity to originate variation nor of law to beget

circumstance, When we gaze on the multifariousness of nature we are

looking straight into the face of a living spontaneity. A day’s ramble
in the country ought to bring this home to us. [6553]
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A man in China bought a cow and three days and five minutes
later a Greenlander sneezed. Is that abstract circumstance connecied with
any regularity whatever? And are not such relations infinitely more fre-
quent than those which are regular? [5.342]

The necessity of initial conditions in solving the equations of
mechanics is another indication to Peirce of the essential part played
by chance. Modern scientists have also stressed the “randomness”
of initial conditions: E. P. Wigner writes, “There are . . . aspects of
the world concerning which we do not believe in the existence of any
accurate regularities. We call these initial conditions.”

Peirce tells us we must remember that “Three elements are
active in the world: first, chance; second, law; and third, habit
taking.” [1409] He imagines what a completely chance world
would be like, and comments, “Certainly nothing could be imagined
more systematic.” For Peirce the universe begins as a state of com-
plete randomness. The interesting problem is to account for the
regularity in the universe; law must evolve out of chaos. This evo-
lutionary process is far from compl-te even now, and presents a
continuing process still:

We are brought, then, to this: Conformity to law exists only within a
limited range of events and even there is not perfect, for an elemen’ f
pure spontaneity or lawless originality mingles, or at least must be sup-
posed to mingle, with law everywhere. [1.407]

Thus Peirce’s scheme starts with chaos and out of this by habit order- :
liness comaes, but only as a partial state. 5

What is of interest to us is the fundamental role of chance or
randomness in Peirce’s cosmology, and the connection: of that role
with statistical mechanics and Darwinism, rather than the details of
his metaphysics.

The two examples of Henry Adams and C. S. Peirce do not
establish the splash in the puddle, but they do serve at least to indi-
cate the influence of the Darwinian and kinetic theory ideas, and
they show the rising importance of chance.

(R e ]

Although I have concentrated on the relatively increased atten-
tion focused upon randomness in the twentieth century as compared
with the nineteenth century, randomness attracted some interest
before our century. One can find many earlier examples of the order-
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randomness dichotomy, and there have been periods when, even
before the nineteenth century, random concepts acquired some
status. One example containing elements of our present dichotomy
is the continuing battle between classicism and romanticism in the
arts and in literature. But the twenticth-century interest, as we have
indicated, is more intense and of different quality. The chance com-
ponent has never becn totally absent; even the most careful artist
in the last century could not be precisely sure of the result of his
meticulously controlled brush stroke. The classical painter resisted
chance—the goal of his years of training was to gain ever greater
control over the brush. By contrast the contemporary painter often
welcomes this random element and may even increase it. It is this
contrast that I intend to stress. Although I point to this one element,
the reader should not falsely conclude that I am not aware of non-
random clements. Even now randomness is seldom the sole factor.
When Pollock painted, the random component was far from the
only element in his technique. He chose the colors, he chose his
hand motions, and he chose the place on the canvas where he wanted
to work. Further, he could, and often did, reject the total product
at any time and begin over. Except in the most extreme examples,
randomness is not used alone anywhere; it is almost always part of
a larger situation. This is J. R. Pierce’s emphasis on order.

The persistence of chance elements in highly ordered socicties
suggests a2 human need for these elements. Perhaps no society ever
described was more completely organized than Arthur C. Clarke’s
fictional city of Diaspar, described in The City and the Stars. Diaspar,
with its past, and even to some extent its future, stored in the
memory banks of the central computer, has existed with its deter-
mined social structure for over a billion years. But the original
planners of the city realized that perfect order was too much for
man to bear:

“Stability, however, is not enough. It leads too easily to stagnation, and
thence to decadence. The designers of the city took elaborate steps to
avoid this. . . . I, Khedron the Jester, am part of that plan. A very
small part, perhaps. I like to think otherwise, but I can never be sure. . . .
Let us say that I introduce calculated amounts of disorder into the city.™"?

YA. C. Clarke, The City and the Stars (Harcourt, Brace and Co., New York,
1953), PP- 47-53.
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But our present situation confronts us with something more than a
simple dichotomy between order and disorder, as suggested in both

of the following passages, one from L. L. Whyte and one from
Erwin Schrédinger:

In his long pursuit of order in nature, the scientist has turned a corner.
He is now after order and disorder without prejudice, having discovered
that complexity usually involves both.!®

The judicious elimination of detail, which the statistical system has
taught us, has brought about a complete transformation of our knowledge
of the heavens. . . . It is manifest on all sides that this statistical method
is 2 dominant feature of our epoch, an important instrument of pro-
gress in almos® every sphere of public lifel?

Although the use of random methods in physics and biology at
the end of the last century originally assumed that one was dealing
with areas that could not be treated exactly, but where exact laws
did exist, a subtle change of view has come about, so that now

random elements are seen as having a validity of their own. Both
Whyte and Schrédinger see the current situation as something more
than a choice between two possibilities. Whyte thinks both are
essential for something he calls “complexity.” But I prefer Schro-
dinger’s suggestion that the two are not necessarily opposed, and that
randomness can be a tool for increasing order. Perhaps we have a
situation resembling a Hegelian synthesis, combining two themes
which had been considered in direct opposition.

Finally I note an important twenticth century reaction to ran-
domness: Joy. The persistence of games of chance through the ages
shows that men have always derived some pleasure from random-
ness; they are important in Clarke’s Diaspar, for example:

In a world of order and stability, which in its broad outlines had not
changed for a billion years, it was perhaps not surprising to find an
absorbing interest in games of chance. Humanity had always been fasci-
nated by the mystery of the falling dice, the turn of a card, the spin
of the pointer . . . however, the purely intellectual fascination of chance
remained to seduce the most sophisticated minds. Machines that behaved
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181, L. Whyte, “Atomism, Structure, and Form,” in Structure in Art and in
Science, ed. G. Kepes (G. Braziller, New York, 1965) p. 20.

BE, Schrédinger, Science and Human Temperament, trans. J. Murphy and
W. H. Johnston (W. W. Norton, Inc., New York), p. 128.
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Everyday observation of waves includes ripples in water
or vibrations set up by a slammed door. A wave isa
traveling pattern, not the mass movement of maitar.

13 Introduction to Waves

Physical Sciences Study Committee

1965

15-1 A Wave: Something Else That Travels

In the last chapter we considered at some length
a particle model of light, in which we supposed
that light consisted of a stream of particles or
corpuscles. We found that this model fails to
provide completely satisfactory explanations
for some of the behavior of light that we ob-
served. We therefore find ourselves faced with
a choice: we can try to construct a better parti-
cle model that will succeed where the earlier one
failed, or we can look for a new model based on
a completely different concept. Let us try the
second approach.

The most basic thing to be accounted for in
any model of light is the fact that light travels
through space. In looking for a new theory,
we first ask whether there is anything except a
particle (or stream of particles) that can move
from one point to anviher. The answer is “‘yes.”
Consider, for example, what happens when we
drop a pebble into a quiet pond. A circular
pattern spreads out from the point of impact.
Such a disturbance is called a wave, and if you
watch the water closely enough, as such a wave
moves across the surface, you will find that
although the water may be churned and jostled
locally, it does not move forward with the wave.
This is quite clear if you watch a bit of wood or
a small patch of oil that may be floating on the
pond. The wood or oil moves up and down as
the wave passes; it does not travel along with
the wave. In other words, a wave can travel for
long distances, but once the disturbance has
passed, every drop of water is left where it was
before. 163
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accidents, his skills, his weaknesses, his luck—against the world.”

My final example of randomness is lighter. I am reliably in-
formed that several years ago a group of students at Harvard formed
a random number socicty for propagating interest in random num-
bers. Among other activities they chose each week a random
number of the week, and persuaded a local radio station to an-
nounce it!

Although the reader may not accept my thesis, I continue with
the assumption that our culture differs from the culture of the
previous few centuries partly because of an increased concern with
and conscious use of elements which are random in some sense of
the word. We have seen this use in seemingly unrelated areas, and
in ways previously very uncommon. Now we will enter on an even
more difficult problem: assuming that the twentieth century con-
sciously seeks out randomness, can we find any historical reasons
for its permeating different fields?

I need hardly remind you of the difficulty of this problem. The-
orizing in history has generally seemed unreasonable, except to the
theorist himself and to a small group of devoted followers. The
present problem is not general history but the even more difficult
area of intellectual history. Despite vigorous attempts to understand
cultural evolution, or particular aspects of it such as the development
of scientific knowledge, I believe it is fair to say that we know far
less than we would like to know about how ideas develop. It would,
therefore, be unreasonable for me to expect to give a rich theory of
how humans modify ideas. Instead I shall grope toward a small
piece of such a theory, basing my attempt on the evidence presented
on randomness as a twentieth-century theme.

The rough idea I shall bring to your attention might be crudely

If we look around us, we can find all sorts of
examples of waves. Fo: lustance, we notice an
American flag as it ripples in the breeze at the
top of a flagpole. The ripples or waves travel
out along the cloth. Individual spots on the
cloth of the flag, however, hold their positions
as the waves pass by. The fourth white star in
the bottom line on the field of blue always re-
mains the fourth star in the bottom line and its
distances from the four edges of the flag remain
unchanged. Just as the water does not travel
with the water waves, so the cloth of the flag
remains in place when the waves have passed
through it.

Some waves are periodic or nearly so; the
motion of the material repeats itself over and
over. Not all waves, however, have this prop-
erty. For example, when you slam the door of
a room, the air in the doorway is suddenly com-
pressed, and this single short compression
passes as a disturbance across the room, where
it gives a sudden push to a curtain hanging over
the window. Such a wave of short duration is
cailed a pulse.

Here is another example of a wave pulse. We
place half a dozen pocket-billiard balls (plastic
croquet balls will work. too) in a straicht line
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the traveling of the wave, affected areas at a distance from the

, source. Probably one source is not enough; often one needs rein-
forcement from several disturbances to create a revolution. And the
sources themselves must be powerful if the effects are to be felt
at great distances in the cultural plane.

I shall note two nineteenth-century events which were power-
ful sources, and so may have contributed to a new interest in
randomness. Both are from science, but this may reflect my own
specialization in history of science; I am likely to find examples
from the area I know best. My two examples are of unequal
weight. The minor one certainly affected profoundly the physicist’s
attitude toward randomness, but how widespread its effect was is not
clear. The second example, however, was the major intellectual
event of the century.

The first example is the development of kinetic theory and
statistical thermodyndmics in the last half of the century, involving
Rudolf Clausius, James Clerk Maxwell, Ludwig Boltzmann, Wil-
lard Gibbs, and others. Because physicists believed that Newtonian
mechanics was the fundamental theory, they thought that all other
theories should “reduce” to it, in the same sense that all terms could
be defined using only the terms of mechanics, and that the funde-
mental principles of other areas could be deduced logically from the
principles of mechanics. This attitude, applied to thermodynamics,
led to kinetic theory and statistical thermodynamics.

In kinetic theory a gas (a word which may originally have
meant “chaos™) was viewed as a very large number of separate
particles, each obeying the Newtonian laws of motion, exerting

®Pointed out to me by Steven Brush. See J. R. Partington, “Joan Baptist von
Helmont,” Annals of Science, 1, 359-384 (1936).
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later, the driver of the second car, seeing that
the car ahead of him is in motion, starts his car
forward. Still later, the driver of the third car
gets his car under way, and so on down the line
away from the traffic signal. You can see a
“pulse” move down the line of cars. It is inter-
esting that this “starting pulse” travels in one
direction while the cars travel in the other direc-
tion.

Just how fast the starting pulse travels back
depends on how fast the various drivers react,
and how their cars respond. If we were able to
handpick a group of drivers with identical re-
action times, and provide them with cars that
accelerated in exactly the same way, the starting
pulse would travel backward at a uniform speed.

What is alike in all of these examples? In
each case the disturbance travels through some
medium—through the water, the cloth of a flag,
the billiard balls, or the line of cars: but t*2
medium does not go along with the disturbance.
Disturbances which travel through media are

what we mean by waves. We can now answer
the question we asked at the beginning of this

section. is there anything except a particle that
can move from one point to another? A wave,
a thing which is not itself a particle of matter,
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15-1 Tne generation and motion of a pulse along a spring shown
by a series of pictures taken with o movie camera,
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15-2 Waves on Coil Springs

Do waves really behave like light? To find out,
we must know more about them. When we
know how they act, we can compare their be-
havior with what we know about light and with
other things that we can find out about it. The
variety of examples we have mentioned also
suggests that waves are worth studying for their
own sake.

It is convenient to start our study of waves
with a coil spring.* Figure 15-1 shows pictures
of a pulse traveling along such a spring. These
pictures were taken by a movic camera at inter-
vals of 4i; of a second.

We see that the shape of the pulse does not
change as it moves along. Except for the fact
that the pulse moves, its picture at one moment
is just like a later picture. Also we see that the
pulse moves the same distance in each interval
between pictures—it moves along the spring at
constant speed.

The spring as a whole is not permanently
changed by the passage of the pulse. But what
happens to each small piece of spring as the
pulse goes by? To help us fix our attention on
one piece, we can mark the spot by tying on a
bit of white string or ribbon as shown in Fig.

15-2. If we then shake the spring to start 2
pulse moving along it, we can see how the
marked spot is displaced. We find that it moves
at right angles to the spring as the pulse passes
it

Other pieces of the spring, as well as the
marked spot, also move. We can see which
pieces are moving and which way they go if we
look at two pictures, one of which is taken

* If you find it hard to get a coil spring, a flexible clothesline
or a rubber tube will also do pretty well. Tie one end to a
doorknob and shake the other. If the clothesline or tube is
sufficiently heavy, you will get good pulses that travel slowly
enough for casy observation.

Introdustion to Waves
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. 15-2 The mofion af o pulse from right to left olong a spring with
a ribbon oround one point. The ribbon moves up and down
os the pulse goes by, but does not move in the direction
of motion of the pulse.
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shortly after the other. Here we shall use two
successive pictures taken from Fig. 15-2. We
have printed these two pictures together in Fig.
15-3 so that we see the pulse in two successive
positions just as we would see it in a rapid
double exposure. Below the photo in Fig. 15-3
we have traced the pulse in its earlier position,
and the gray line shows the later position. As
the arrows show, while the pulse moved from

15-3 The relation between the motion of a pulse traveling from

right to left and the motion of the coil. The photograph
shows the pulse in two successive positions. The arrows
in the diagram indicate how the coil moves as the pulse
passes. The largs, open arrow shows the direction of the
motion of the pulse.

right to left, each piece of the coil in the right-
hand half of the pulse moved down and each
piece of coil in the left-hand half moved up.

If the pulse were moving from left to right,
just the reverse would be true, as we show in
Fig. 15-4. Here we use a schematic pulse be-
cause it is a little easier to work with and we can
make ‘the time interval between positions as
short as‘'we wish. In this way we can determine
the instantaneous motion of the coil. Thus, if
we know in which direction the pulse is moving,
we can determine how each point of the spring
moves at any particular stage in the passage of

Introduction to Waves
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I 'Ihc' Law c;f Conservation
2, The Law of Dissipation
3. The Law of Evolution

The contrast Adams is making is between Darwin’s ideas and Kel-
vin’s ideas.

We find other similar references in Henry Adams, but this
should be enough to show his interest in Darwin and kinetic theory.
Other aspects of contemporary science also very much influenced
him; he often refers to the enormous change produced by the
discovery of new kinds of radiation at the turn of the century. He
seems to be a particularly rewarding individual to study for an
understanding of the intellectual currents at the beginning of the
century, as Harold G. Cassidy has pointed out:

Henry Adams was an epitome of the non-scientist faced with science
that he could aot understand, and deeply disturbed by the technological
changes of the time. He was a man with leisure, with the wealth to
travel. With his enquiring mind he sensed, and with his eyes he saw
a great ferment at work in the World. He called it a force, and tried
to weigh it along with the other forces that moved mankind. The edu-
cation he had reccived left him inadequate from a technical point of
view to understand, much less cope with, these new forces. Yet his
insights were often remarkable ones, and instructive to us who look at
our own period from so close at hand.!s

As final evidence we consider the work of the seminal American
philosopher Charles Sanders Peirce. Peirce, although seldom hold-
ing an academic position, played an important role in American
philosophy, particularly in the development of pragmatism. He was
the leader of the informal “Metaphysical Club” in Cambridge dur-

%Harold G. Cassidy, “The Muse and the Axiom,” American Scientist 51,

315 (1963).

the pulse. On the other hand, if we know how
the parts of the spring move, we can determine
the direction in which the pulse is traveling.

We now have a good notion of how the pieces
of spring move, even though there is no visible
motion in any one of our pictures. Really, what
we have done is to observe (1) that any pulse
moves undistorted at constant speed along the

=:> the some pulse on

pulse .. instont loter

15-4 The relation between the motion of a pulse traveling from
left to right and the motion of the spring.

spring and (2) that the spring itself moves only
at right angles to the motion of the pulse. We
can combine these two pieces of information to
learn how each part of the spring moves at any
time. Of course, we have looked only at the
s:: 1plest waves, and the statement we have just
made may not be true of all waves. Even in the
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evidenced by many passages in his work, such as these comments in
“On the Fixation of Belief":

Mr. Darwin has purposed to apply the statistical method to biology. The
same thing has been done in a widely different branch of science, the
theory of gases. We are unable to say what the movements of any par-
ticular molecule of gas would be on a certain hypothesis concerning
the constitution of this class of bodies. Clausius and Maxwell were yet
able, eight years before the publication of Darwin’s immortal work, by
the application of the doctrine of probabilities, to predict that in the
long run such and such a proportion of the molecules would under
given circumstances, acquire such and such velocities; that there would
take place, every second, such and such a relative number of collisions,
etc., and from these propositions were able to deduce certain properties of
gases especially in regard to the heat relations. In like manner, Darwin,
while unable to say what the operation of variation and natural selection
in any individual case will be, demonstrates that, in the long run, they
will, or would, adopt animals.to their circumstances.!® [5.362)

A second example in which Peirce links the two theories is in
“Evolutionary Lore":

The Origin of the Species was published toward the end of the year
1859. The preceding years since 1846 had been one of the most pro-
ductive seasons—or if extended so as to cover the book we are con
sidering, zhe most productive period in the history of science from its
beginnings until now. The idea that chance begets order, which is one
of the cornerstones of modern physics . . . was at that time put into its
clearest light. [6.207]

He goes on to mention Quetelet and Buckle, and then begins a
discussion of the kinetic theory:

——

Y8C. S. Peirce, Colleczed Papers ed. C. Hartshorn and P. Weiss (Harvard Uni-
versity Press, Cambridge, Mass.). References are to section numbers.
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other, or do they somehow knock each other
out?

The best way to find out is to try. The photo-
graphs in Fig. 15-5 show what happens when
two pulses are started at opposite ends of a
spring at the same time, one traveling from left
to right and one from right to left. The top pic-
tures show the pulses approaching each other
as if each had the spring to itself. As they cross
each other, the two pulses combine to form
complicated shapes. But after having crossed.
they again assume their original shapes and
travel along the spring as if nothing had hap-
pened, as is indicated by the pictures at the
bottom. The left-going pulse continues to
travel to the left with its original shape. The
right-going pulse continues to move on to the
right with its earlier form. We can perform this
experiment over and over with different pulses.
We always get the same general result.

The fact that two pulses pass through each
other without either being altered is a funda-
mental property of waves. If we throw two
bails in opposite directions. and they hit each
other, their motion is violently changed. The
crossing of waves and the crossing of streams
of balls made of solid matter are thus two verv




15-5 Two pulses crossing each other. Nofice thot the two pulses
have different shapes. Thus we can see thot the one which
was on the left of the beginning is on the right after the
crossing, and vice versa.
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15-6 The superposition of two pulses. The displacement of the
combined pulse is the sum of the separate displacements.

-

matter of fact, it also works for more than two
pulses—the displacements due to any number
of pulses can be added.

We can summarize the whole situation as
follows. To find the form of the total wave dis-
turbance at any time, we add at each point the
displacements belonging to each pulse that is

introduction tc Waves
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proper, 5o it 1s not expressed openly. But in other places randomness
is clearly acknowledged. We noted that the artist is particularly
willing to zdmit the use of randomness, so it is not surprising to
sce an artist, Ben Shahn, admitting his pleasure: “I love chaos. It is
a mysterious, unkr.own road with unexpected turnings. It is the way
out. It is freedom, man’s best hope.”®

%Quoted in Industrial Design 13, 16 (1966).




Our second special case is shown in Fig. 15-9.
Here we have two similar pulses, one coming
from the right and one from the left. In one
the displacements are upward and in the other
they are downward. These pulses differ from
those of Fig. 15-7 in that neither is symmetrical,
although the two are alike in shape and size.

Because neither of the pulses is symmetrically
shaped, they never completely cancel each
other. But there is always one point P on the
spring which will stand still. That point is ex-
actly halfway between the two, pulses. As the
pulses come together, they pass simultaneously
through that ha'fway point in such a way that
the highest point of one pulse and the lowest
point of the other just caficél each other out.
The same argument applies to any other pair of
corresponding points on the pulses. They al-
ways arriv~ at thc midpoint of the spring to-
gether, one on top 'nd one at the bottom.
Consequently, the midpoint stands still,

15-4 Reflection and Transmission

When a pulse moving on a spring comes to an
end that is held fixed, it bounces back. This re-
versal of direction is called reflection, and the
pulse that comes back is called the reflected
pulse. In Fig. 15-10 the fixed end is on the left.
In the original or incident pulse, which moves to
the left, the displacement is upward. The re-
turning pulse has its displacement downward.
The pulse comes back upside down, but with
the saine shape that it had before it was re-
flected.

You may wonder why the reflected pulse is
upside down. The reason for this behavior is
that one point on the spring, in this case the end
point held by the hand, does not move. We
have already met a situation where a point on
the spring remained at rest; this was the point

Introduction to Waves




P in Fig. 15-9. Cover the right-nand half of
Fig. 15-9 and you will see an upward pulse
moving to the right, “flattening out” as it ap-
proaches P, and finally being reflected upside
down. Now, at the front of an upward pulse,
the spring itself moves upward (Fig. 15-3).
When the front of the pulse in Fig. 15-9 g - to
P, the point P should move upward. But since
P remains at rest, the upward motion of the
spring must be canceled by a downward mo-
tion. The only difference between the situations
shown in Figs. 15-9 and 15-10 is that in Fig.
15-9 we supply the necessary downward motion
by sending a downwar- pulse from the right,
whereas in Fig. 15-10 we supply the downward
motion by simply holding the end point fixed.
Forcing the end point to remain at rest is just
another way of supplying the downward mo-
tion which cancels the motion of the spring due
to the original pulse, and then propagates to the
right in the form of an upside-down pulse.

Imagine now that instead of fixirg our coil
spring at one end, we connect it to another
spring which is much heavier and therefore
harder to move. Our new arrangement will be
somewhere in between the two cases (a) the
original spring tied down, and (b) the original
spring just lengthened by an additional piece of
the same material. In case (a) the whole pulse
is reflected upside down; in case (b) the whole
pulse goes straight on. We may, therefore,
expect that under our new arrangement part of
the pulse will be reflected upside down, and part
of it will go on, or as we say, will be transmitted.
This effect is shown in Fig. 15-11 where the
original pulse comes from the right and the
heavier spring is on the left. We see that at the
junction or boundary between the two springs
—which are the media in which the wave trav-
els—the pulse spiits into two parts, a reflected
and a transmitted pulse. Like superposition,
the splitting into a reflected and a transmitted
part is a typical wave property.
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15-10 Reflection of o pulse from a fixed end. The reflected pulse
is upside down,
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15-11 A pulse passing from a light spring {right) to a heavy sprin.
At the junctian the pulse is partially transmiited and por-
tially reflected. You will note that the reflected pulse is
upside down, :
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15-12 A pulse passing from a heavy spring (left} to a light spring.
At ths junction the pulse is partially transmitted and por-
tially reflected. The reflectsd puls is right side up.
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What happens when a pulse goes the other
way, traveling along the heavier spring and
arriving at the junction between it and the light
spring? This is not so easy to foresee. We no
longer can bracket the behavior between two
situations in which we know the answer. But
experiment tells us what takes place. In Fig.
15-12 we see a pulse moving from the left, from
a heavy toward a light spring. Here, as in the
opposite case, illustrated in Fig. 15-11, part of
the pulse is transmitted and part is reflected, but
this time the reflected pulse is right-side up.

In summary, then, when a pulse is sent along
a spring toward a junction with a second spring,
we observe that the winle pulse is reflected up-
side down whenever tt : second spring is very
much heavier than tie first. As the second
spring is replaced by Lghter and lighter sprinas,
the reflected pulse becomes small and a larger
and larger transmitted pulse is observed to g0
on beyond the junction. When the second
spring is only as massive as the first, no reflected
pulse is left and the original pulse is completely
transmitted. Then if the second spring is made
still lighter, reflection sets in again, this time
with the reflected pulse right-side up. The
lighter the second spring, the larger is the re-
flected pulse. When the second spring is neg-
ligible the reflected pulse is nearly the same size
as the pulse sent in. This can be demonstrated
with a heavy spring tied to a thin nylon thread
(Fig. 15-13).
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15-13 A pulse an a spring reflected from a junction with a very
light thread. The whale pulse returns right side up. The
blurring of the thread in the middle fromes of the sequence
aof pictures indicates thot the particles of the thread are
moaving ot higl .peed os the pulse passes. Can you deter-
mine the directian of this mation in each of the frames? i
183 i
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Two masters of physics introduce the wave concept in
this section from a well-known popular book.

14  Whatis a Wave?

Albert Einstein and Leopold Infeld

1961

A bit of gossip starting in Washington reaches New
York very quickly, even though not a single individual
who takes part in spreading it travels between these
two cities. There are two quite different motions in-
volved, that of the rumor, Washington to New York,
and that of the persons who spread the rumor. The
wind, passing over a field of grain, sets up a wave
which spreads out across the whole field. Here again
we must distinguish between the motion of the wave
and the motion of the separate plants, which undergo
only small oscillations. We have all seen the waves that
spread in wider and wider circles when a stone is
thrown into a pool of water. The motion of the wave

, is very different from that of the particles of water. g
The particles merely go up and down. The observed
motion of the wave is that of a state of matter and not
of matter itself. A cork floating on the wave shews
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this clearly, for it moves up and down in imitation of
the actual motion of the water, instead of being carried
along by the wave.

In order to understand better the mechanism of the
wave let us again consider an idealized experiment.
Suppose that a large space is filled quite uniformly with
water, or air, or some other “medium.” Somewhere in
the center there is a sphere. At the beginning of the
experiment there is no motion at all. Suddenly the
sphere begins to “breathe” rhythmically, expanding
and contracting in volume. although retaining its spher-
ical shape. What will happen in the medium? Let us
begin our examination at the moment the sphere begins
to expand. The particles of the medium in the immedi-
ate vicinity of the sphere are pushed out, so that the
density of a spherical shell of water, or air, as the case
may be, is increased above its normal value. Similarly,
when the sphere contracts, the density of that part of
the medium immediately surrounding it will be -le-
creased, These changes of density are propagated'
throughout the entire medium. The particles constiut-
ing the medium perform only small vibrations, but the
whole motion is that of a progressive wave. The essen-
tially new thing here is that for the first time we con-
sider the motion of somethiug which is not matter, but
energy propagated through matter.

Using the example of the pulsating spnere, we may
introduce two general physical concepts, imporrant for
the characterization of waves. The first is the velocity
with which the wave spreads. This will depend on the




medium, being different for water and air, for exam-
ple. The second concept is that of wave-length. In the
case of waves on 2 sea or river it is the distance from
the trough of one wave to that of the next, or from the
crest of one wave to that of the next. Thus sea waves
have greater wave-length than river waves. In the
case of our waves set up by a pulsating sphere the
wave-length is the distance, at some definite time, be-
tween two neighboring spherical shells showing max-
ima or minima of density. It is evident that this dis-
tance will not depend on the medium alone, The rate
of pulsation of the sphere will certainly have a great
effect, making the wave-length shorter if the pulsation
becomes more rapid, longer if the pulsation becomes
slower.

This concept of a wave proved very successful in
physics. It is definitely a mechanical concept. The phe-
nomenon is reduced to the motion of particles which,
according to the kinetic theory, are constituents of
matter. Thus every theory whict ses the concept of
wave can, in general, be regarC:.u as a mechanical
theory. For example, the explanation of acoustical phe-
nomenz is based essentially on this concept. Vibrating
bodies, such as vocal .:ords and violin strings, are
sources of sound waves which are propagated through
the air in the manner explainsd for the pulsating sphere.
It is thus possible to reduce all acoustical phenomena to
mechanics by means of the wave concept.

It has been emphasized that we must distinguish be-
tween the motion of the particles and that of the wave

What is a Wave?
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itself, which is a state of the medium. The two are
very different but it is apparent that in our example of
the pulsating sphere both motions take place in the

same straight line. The particles of the medium oscillate
along short line segments, and the density increases
and decreases periodically in accordance with this mo-
tion. The direction in which the wave spreads and the
line on which the oscillations lie are the same. This
type of wave is called Jongitudinal. But is this the only
kind of wave? It is important for our further considera-
tions to realize the possibility of a different kind of
wave, called transverse.

Let us change our previous example. We still have
the sphere, but it is immersed in a2 medium of a differ-
ent kind, a sort of jelly instead of air or watcr. Further-
more, the sphere no longer pulsates but rotates in one
direction through 2 small angle and then back again,
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15-7 The superposition of two equal and opposite pulses on a

co}i|l spring. In the fifth picture they almost cancel each
other.
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4 always in the same rhythmical way and about a definite
axis. The jelly adheres to the sphere and thus the ad-
hering portions are forced to imitate the motion. These
portions force those situated a little further away to

Q imitate the same motion, and so on, so that a wave is

E MC set up in the medium. If we keep in mind the distinc-

What is a2 Wave?

tion between the motion of the medium and the mo-



travels along the spring from the right-hand end
with one that displaces the spring upward and
travels from the left. Suppose that the two
pulses have exactly the same shape and size and
that each is symmetrical. Notice that in one
picture the addition of equal displacements up-
ward (plus) and downward (minus) leaves us
with a net displacement of zero. There is clearly
a moment, as the pulses pass each other. when
the whole spring appears undisplaced. (See
also the drawing of Fig. 15-8)) Why does the
picture not look exactly like a spring at rest?
Let us consider the difference between an un-
displaced spring carrying two equal and oppo-
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15-8 The superposition of two equal and opposite pulses. (A)
Before complete cancellation. (B) At complete cancellation.
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One more remark: the wave produced by a pulsat-
ing or oscillating sphere in a homogeneous medium is
a spherical wave. It is called so because at any given
moment all points on any sphere surrounding the
source behave in the same way. Let us consider a por-
tion of such a sphere at a great distance from the
source. The farther away the portion is, and the
smaller we take it, the more it resembles a plane. We
can say, without trying to be too rigorous, that there
is no essential difference between a part of a plane and
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The basic equation which summarizes the properties of
waves is developed as an example of the application of
mathematics to physics. Lindsay's detailed discussion
will be rewarding for the student who has some knowl-
edge of calculus coupled with persistence to work on
the more advanced passages.

15  Wave Motion and Acoustics

Robert Bruce Lindsay

1840

1. Concept of a Wave. In the discussion of radiation as a type of
heat transfer (Sec. 4, Chapter XVII) mention was made of the explana-
tion of this in terms of wave motion. It now becomes necessary to
elucidate this important concept, which is basic for acoustics, optics,
and a large part of modern physics.

No one who has observed the phenomenon taking place when a stone
is dropped on a water surface can have failed to be impressed
by the way in which the disturbance spreads out in all direc-
tions from the point where it is first produced. In an aimost
uncanny fashion the motion involved in the original disiurb-
ance of the water surface is transferred to distant parts of
the surface without any motion of the water itself from the
original point to the distant ones. In other words, we here
have to deal primarily with the motion not of material but of Fia. 26.1
& change in the configuration of material. This type of motion =~
is known as wave motion, and a wave may be briefly defined as any
propagated disturbance in & continuous medium.

A fer well-known illustrations will serve to focus attention on the
meaning of the wave concept. (1) A kink produced in a long string
or rubber hose by shaking at one point appears to move along the string.
(2) A long metallic ribbon (4B in Fig. 26.1) with perpendicular side
bars attached may be twisted at the bottom and the twist will be
observed to travel up the ribbon and :e: «-n again after reaching the top.
We call this a torsional wave. (3) A solid metal rod AB is rigidly
clamped (Fig. 26.2). A vertically suspended ivory ball C rests lightly

against the end B. If one taps the rod lightly at A, the

A B! ball after an extremely short interval flies away from B.
? ¢ We say that a compressional elastic wave has traveled
along the rod; the elastic “squeeze” produced by the
impact at A has been propagated to B. (4) .. person
speaks and another person at some distance hears him; the elastic dis-
turbance produced in the air in front of the mouth of the speakar travels
through the air to the ear of the hearer; if the air is removed the propa-
gation fails. (5) The electromagnetic disturbance in the antenna of a

Fia. 26.2
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radio station travels through space to be picked up by a radio receiver:
this more complicated phenomenon we call propagation of electro-
magnetic waves. Light waves are a special case.

We intend to sty all kinds of waves in this part of the book. First,
however, let us note -ome general properties. The propagation of the
disturbance always takes place with a definite velocity which depends on
the medium and on the nature of the disturbance. This is called the
velocity of the wave and is evidently a very important wave charac-
teristic. Wave velocities may range from a few meters per second as in
waves in a string to 344 meters/sec for sound in air at room temperature
and to 3 X 10® meters/sec for the velocity of light in vacuo.

When the propagated disturbance is a displacement of the medium
from its equilibrium condition in the direction of propagation the wave
is said to be longitudinal, As examples, we note the compressional
wave inl a solid rod and sound waves in air. When the disturbance is a
displacement perpendicular to the direction of propagation the wave
is called transverse. As examples, we can mention the torsional waves
in the ribbon previously cited and light or electromagnetic waves in
general. Waves on the surface of a liquid like water are a Very common
illustration of a combination of transverse and longitudinal waves.

2. Mathematical Representation of Wave Motion. If we are to
make an effective study of waves we must have a way of representing
them mathematically. This boils down to the need for a mathematical

function to represent a disturbance moving with
1@V favt) deﬁmte veloci.ty V through a medium. I.ﬂt us
~ T simplify our picture by supposing that the disturb-

i : ance is a displacement denoted by £ and is at any

% % ® instant a function of z alone. But since it moves

Fie. 26.3 it must also be a function of ¢, the time. Hence

our task is to find the function ¢ = f(z,¢) which
depicts a wave traveling along the positive z axis with velocity V. Con-
sider the function

L d

E=fz-W), 1)

where the argument is the combination of z and ¢ in the form z — Vi,
To understand the physica! meaning of such a function, take an arbi-
trary time ¢ = f; then ¢ = f(z — V) is a function of z alone. In
Fig. 26.3 we have indicated the plot of this function in the neighborhood
of 2 = z5. Now consider a later time ¢ = Y, and plot the function
f(z — Vt;), which is again a function of z alone. In Fig. 26.3 we have
ploited a portion of this in the vicinity of z = z;.- The value of ¢
for t == o at the point z = 7, is clearly J(xo — Vio). 'The value of ¢
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for t = {; at the point z = z, is just as clearly f(z; — V¢). These two
values will be equal if we choose

2o —Vlg=1z: — Vi,
or A
— 29 = V(t) — bo)- 2

In other words, the value of the function at time ¢ = # at point
Z = 7o reappears at the point z = z; at the later time ¢ = ¢,
where these quantities are releted by eq. 2. Any two points indeed are
related in this way, which means that the whole function of £ changes
with time in such a fashion that it appears to be moving along the
positive z axis with velocity V. But this is what we mean by wave
motion. Hence we see that £ = f(z — V) represents a wave traveling
in the positive z direction with velocity V. Note that nothing is said
about the shape of the function: this is so far quite arbitrary, e.g.,
possible forms of f(z — Vi) are Cy(z — Vi), Cy(z — Vt)?, £4-V9,
etc., whese Cy, C,, C3 are constants put in to secure the correct dnmen-
sionality bat numerically arbitrary until more conditions are laid on
the wave,

It is left for the reader to show by precisely the same reasoning as
above that £ = f(z 4 Vt) is the mathematical representation of a wave
progressing in the negative z direction with velocity V.

Let us again emphasize that the function f(z — Vt) is a function of
both space and time, i.e., at any instant of time it varies from place to
place along the z axis, while at any particular place it varies as time
passes. Its ability to represent wave motion is inherent in the way in
which the space and time dependence are tied together, so to speak, in
the argument of the function.

3. Wave Velocity. Since the velocity of a wave is such an important
characteristic we ought to devote some attention to its evaluation.
Going back to (1), let us differentiate both sides partially with respect
to z. Applying the ordinary calculus rule about the differentiation of
a function of a function, we get

_Qg f(x— Vt) a(z - Vi) af(z - Vt)
oz dz— Vt) oz a(z — Vt)

and a second differentiation yields likevise

% ¥(z - Vt)
oz - Vit 3)

Similarly if we differentiate first once and then twice partially with
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respect to £, the results are
% _fz-V)aa—Vt) o~ V1)
a az-VvV) o Az —vt)

% 3%z — V1)

B~ " e - vy “

Comparison of (3) and (4) yields
. % [o%
or

%t /%

where, of course, we take the positive sign of the radical. We may con-
sider (5) the fundamental equation of wave motion. From our present
standpoint it is significant because it gives us a means of finding out
something about V. The reader might indeed query why we went to
the trouble of conducting two differentiations, since we might have at
once

% /2%

f .4

at/ oz

- The trouble with this is its lack of generality. It holds only for a wave
in the positive z direction. The reader can readily show that, for a
wave in the negative z direction, one gets V =%§ -3:- However,
the form (5) holds precisely for this case as it does for the positive z
direction. Hence we take (5) to be more fundamental.

To find V in any specific case we must evaluate the ratio of the
derivativesin (5). As an illustration, let us do this for the longitudinal
waves in a solid rod already mentioned in Sec. 1. Consider the rod a

A cylinder of cross-sectional area

] S placed with its axis slong

8 x ‘&'F “‘5‘5‘-"" the z axis. (Fig. 264.) Sup-
—; pose that at some point of the

Fro. 264 . rod a longitudinal tensile siress

e F is applied. The result is a

displacement of every point of the rod from its equilibrium position,
i.e.,a dilatational strain (cf. Sec. 1, Chapter XI). The measure of this
strain is the increase in length per unit length of any element of
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'

4. Harmonic Waves. As our previous discussion should have amply
indicated, there is nothing essentially periodic about wave motion.
Periodicity implies the repetition at regular intervals of time of the
same phenomenon at a particular place. But the passage of a solitary
hump of displacement through a medium with velocity V does not
fulfill this requirement though it is a wave. Nevertheless it turns out
that the most important kinds of waves for physical problems are periodic
waves of which the simplest type is the simple harmonie or sinusoidal
variety. In such a wave the disturbance, e.g., & displacement of the
medium, is a sine or cosine function of both position and time, with these
quantities entering in the characteristic combination z — V¢. Since we
do not associate meaning with the sine or cosine of a distance, we must
write for the displacement in a sinusoidal wave

£ = Asink(z - Vi), (18)

where k is a constant having the dimensions of reciprocal length, so as

to make k(z — Vt) non-dimensional. If " \

we plot £ as a funetion of z for a partic-

ular instant ¢ = &, we get the usual sine / \ /j{\
curve indicated in Fig. 26.6. The maxi- \ p—
mum displacement A is called the ampli- \UL

tude of the harmonic wave. The question Frc. 6.6

of the physical significance of k arises. .

Let us call the interval along the z axis after which the displacement
repeats itself in the same way A (cf. the figure). Then clearly

A sin (kz — VEkto) = A sin[k(z 4+ \) — Vil

But this means that
kx — kEVtg 4+ 22 = k(z+\) — VY
2
whence = 7’ (19)

The quantity \ is known as the wave length of the harmonic wave. Tech-
nically speaking, it is the distance between successive points at which
the wave differs in phase by 2r, e.g., the distance between successive
maximum displacements or crests, or the equa! distance between suec-
cessive minimum displacements or froughs.

We can also express k in terms of the number of waves which pass
any point in unit time, i.c., the frequency, ». TFor at any particular
point £ oscillates in time with a period P, let us say. Take the point xy.
Then

£ = Asink(zo — Vi).
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After the expiration of time P, the displacement must return to the
same value. Thus

Asink(zo — Vt) = A sin klzg — V(¢ + P)],

whence
k(@o— Vt) = klzo — V(t + P)] + 2x
or
kVP = 2x,
s0 that

since the frequency » = 1/P. The combination of (19) and (20) gives
the very important wave formula
A=VP= -1—, (21)

This could have been seen indeed at once from the definition of wave
length, frequency, and period. Consulting Fig. 26.6, we see that a crest
travels distance A in time P, progressing with constant velocity V.,
Hence (21) follows at once. It holds for ail types of harmonic waves
and indicates that waves of high frequency have short wave length, and
vice versa.

It is customary to define the phase of & harmonic wave as the argument
of the sine in the expression (18). Thus

Phase of harmonic wave = k(z — V). (22)

This may in turn be written in various ways, depending on the manner
in which k is expressed. The reader will have no difficulty verifying
the equivalence of

k(x = Vi) = 21(; - vt) = (kx — 2xut)

o)D)

Convenience dictates the choice to be made for any particular purpose.

6. Wave Front. Huygens' Principle. So far we have spoken only
of & wave progressing along the positive or negative z directions. But
we recall that this is indeed a special case: water waves spread over a
surface and sound and light waves spread in general through threc-
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dimensional space. Evidently we need another concept to take account
of this spatial distribution. This is the wave front, defined as ti.e surface
at all points of which the phase is the same at the same instant. The
simplest type of wave front is a plane, and we can see its meaning best
by considering this case. In Fig. 26.7 we have in- z
dicated a plane PP’ perpendicular to thez axis. Let us

suppose that a disturbance is being propagated along P

the z axis in such a way that the phase is the samc at 4 P
some instant at all points of the plane indicated. This
means that the displacement £ is the same at all points
of the plane and, moreover, that the displacement ve-
locity 0¢/dt is also the same. Of course the plane will not in practice

extend to infinity, but will have finite dimensions.

If a wave spreads out from a single point in a medium having the
same properties in every part, the wave front will be a sphere. This is
approximately true, for example, of sound emitted from a small source.
A portion of a spherical wave front far away from the source will be
approximately plane.

The use of wave fronts is an important means of studying the propa-
gation of waves. The question aises: If one knows what the wave
front of a particular progressive wave is at one instant, how can one
ascertain what it is at some subsequent instant? The answer to this

question is provided by a fundamental principle first
&' enunciated by Huygens. In Fig. 26.8, let us represent
the wave front at the instant ¢ by AB. This is strictly,
of course, its trace on the plane of the paper. Draw from
every point of AB a hemispherical wavelet of radius equal
B to Vdi, where V is the wave velocity in the medium and
B¥! dlis a smallinterval of time. Now draw the surface which
Fic. 268 touches all these wavelets, i.e., the mathematical envelope
of the set. This will form the wave surface A’B’, which
according to Huygens' principle constitutes the new wave surface at
- the later time ¢ + dt.

~ 6. Reflection and Refraction of Plane Waves. One of the uses of
Huygens princinie is the determination of the laws of reflection and
refraction of a wave meeting the surface separating two media. The
phenomenon of reflection is a common observation with all kinds of
waves, e.g., water waves from a pier, sound waves from a high wall
(echo), and light waves from a mirror. The law governing the geo-
metrical characteristics of reflection has been known for a long time.
We want now to examine it carefully in the light of the fundamental

principle of the propagation of wave fronts.
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We shall confine our attention to the reflection of a plane wave at a
plane surface. In Fig. 26.9, let SS’ denote the trace on the plane of
the paper of the plane surface separating the media I and II. Tmagine
that a plane wave front AB (strictly, of course, AB is the trace on
the plane of the paper of the wave front which

?‘,\ .N;F itself is assumed normal to the plane of the
st \ili/ A\ s+ Paper, but for simplicity we shall use the ~otation
4iye ¥ ¢ just indicated) is incident on the surface at

Fia. 269 the angle 2 = ZBAC. This is also the angle

which the normal to the wave front O4 makes
with the normal to the surface NN’. We shall call it the angle of inci-
dence. At the instant when we contemplate the wave front its end 4
is in contact with the surface. We wish to construct the wave front
after the expiration of time ¢, where this is the time taken for the dis-
turbance to travel from the end B to the surface. Draw BC normal
to the wave front. Then if the velocity in the medium I is Vi we
have BC = Vit. Strictly speaking, we ought to trace thu successive
positions of the wave front as the disturbance proceeds from B to C.
Actually, since the wave front is plane it suffices to draw, using 4 as
center, a semicircle with radius Vit. Then we know that, by the time
the disturbance from B has reached C, the reflected disturbance from A4
has reached some point on the hemisphere of which this semicircle is
the trace. Hence the trace of the reflected wave front will be the
line CD through C tangent to this semicircle. This can be verified by
constructing the intermediate wavelets between C and D by means of
Huygens’ principle. The tangent just drawn will be seen to be tangent
tothemall. Since AD is normal to CD and BC = ADis normal to 4B,
it follows that the angle which CD makes with S’ is equal to the angle
which 4B makes with SS’. 'We may call the former angle the angle of
reflection. But then we have shown that in the reflection of a plane
wave front from a plane surface the angle of incidence is equal to the
angle of reflection. This is the law of reflection for plane waves. Note
that it can be giv 1. a very simple expression in terms of the normals
to the wave fronts. Thus OA, the normal to the incident wave front,
will be called the sncident ray. Similarly ADR, the nommal to the
reflected wave front CD, will be called the reflected ray. From the con-
struction it is clear that these make the same angle with the normal te
the surface. We shall often find it convenient in treating wave motion
to replace wave fronts by rays. Another essential part of the law of
plane wave reflection is the result, easily evident from Fig. 26.9, that
the reflected ray lies in the same plane as the incident ray, namely the
plane of the diagram.
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Let us now go on to a discussion of the refrs .+ * olare wave
at a plane surface. Consider again (referrin; ) . _. 2610) the
bounding surface SS’ between media I and II in wiuch the wave veloci-
ties are V; and Vg, respectively. The plane wave front AB is incident
on S8’ at angle 7. The problem is to construct the wave front in
medium II at the end of time ¢{ where ¢ =
BC/V,;. We shall assume that V; < V;., In
time £ the disturbance from A will be some-
where on the surface of the hemispherical wave
front whose trace is the circle of radius Vat.
Draw the tangent from C to this circle, ie.,
CF. This is the wave front desired, as may Fic. 26.10
be readily verified by constructing other wave-
lets in accordance with Huygens’ principle. The refracted ray is AF,
which makes with the normal NN’ the same angle r (the so-called angle
of refraction) which CF makes with the surface SS’. From Fig. 26.10
we see that

;o BC_Tat
T AC T AC
e ﬂ _ Vit
sin AC = AC’
whence
sini_ V1
sinr Vz. 24)

This is the law of refraction for plane waves of every variety and is
usually called Snell’s law, because Snell discovered it for light. The
ratio V;/V3 may be called the index of refraction of medium il with
respect to medium I.  Obviously its value depends on the kind of wave
being considered.

It ought to b emphasized that, although we have derived the laws
of reflection and refraction for a plane wave at a plane surface, they can
be readily generalized to wave fronts and surfaces of arbitrary form.
In general it is easier to work with the normals to the wave front or the
rays. We shall see good examples of this when we come to light. We
shall also have occasion to note where this procedure does not work.

We have neglected one important phenomenon associated with the
reflection of waves at a boundary. This can be understood in terms
of the experiment on torsional waves in & metal ribbon referred to in
Sec. 1 of this chapter. If the ribbon is rigidly fastened at the ceiling,
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when the “ twist "’ weve reaches this point, the ribbon is observed to
stop twisting in the original direction and to begin to twist in the
opposile direction as the wave is reflected downwards. This corresponds
to what we shall term a change in phase on reflection. Closer analysis
of the problem shows that, if we define the phase of a harmonic wave
as in eq. 22, the total change in phase when a wave is reflected at a rigid
boundary is equal to =, corresponding to a half-wave-length change in z.
On the other hand, when a wave is reflected at a boundary which is per-
fectly free to move, the change of phase is zero. This can be tested
experimentally in the case of the torsional wave in the ribbon by giving
the ribbon perfect freedom of rotation where it is attached to the ceiling.
The behavior of the phase of an elastic wave on reflection can be stated
in even more general fashion, viz.: when an elastic wave is reflected at
a boundary in going from an elastically less rigid to an elastically more
rigid medium (where here the effective elasticity is measured by the
product of the density and the velocity of the elastic wave) the phase
changes by x; while when the reflection takes place in going from an
elastically more rigid to a less rigid medium, the change of phase is zero.
Even in light waves there is reason 5 believe that such phase changes
take place on reflection (cf. Sec. 2, Chapter XX VIII).

7. Stationary Waves. When a progressive wave in & medium is
reflected by a surface or barrier of some kind, reflection gives rise to a
wave n the opposite direction. Thus if one end of a string or rubber
hose is tied to a rigid support while the other end is shaken, in addition
to the wave traveling down the string from the hand, a wave traveling
back to the hand from the support is also observed. In the general
case of harmonic waves proceeding in opposite directions in a medium
a very interesting phenomenon can arise. In the first place we must
note that the resulting disturbance is the algebraic sum of the dis-
turbances in the two waves. If the disturbances are harmonic displace-
ments with the same frequency and amplitude we have

£ = A cos 2w(vt - ’%)»

\ (25)
vr
E = A cos 214'(14 + T’/ ’

the plus and minus signs referring to the waves in the positive and nega-
tive directions respectively. The resultant displacement is

£ =E4 + £ = 24 cos 2mt cos -2%1» (26)
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if the indicated trigonometric operations are carried out. If we fix our
attention on some value of z, the displacement in general varies in time
with frequency », but there are certain points at which no motion ever
takes place. These are the points for which

2xvz

cos 5~ = 0, (27)
and where z therefore has the values
_(@n+1)V
z = (28)

n being any integer. The points corresponding to these values of z are
called nodal points or nodes. In Fig. 26.11 we have plotted the displace-
ment £ given in eq. 26 as a func-
tion of zforfoursuccessive instants,
indicated by the numbers 1,2, 3, 4
at theleft side of the figure. Though ,
the four curves differ they all agree Fia. 2611
in passing through the points Ny, :
N, Ny, ete., and the displacement never differs from zero at these points:
they are the nodes. From (28) it follows that the distance between
successive nodes is V/2», which, however, from eq. 21 is equal to A\/2
or a half wave length. Evidently the motion fluctuates between the
extreme positions marked 1 and 4, the largest possible displacement
being 24. This is attained periodically at intervals equal to P = 1/»
/ at points intermediate between the nodes, ie., at L;, Ly, etc. These

2
points are known as loops. Here, of course, cos -I‘—,E =1 The dis-

|
tance between successive loops is also equal to A /2. 3
The whole phenomenon we have been discussing is known as a sta- ,
‘ tionary or slanding wave. 'The production of such a wave affords a very
| satisfactory method of estimating the velocity of the wave motion in
question, for, if the frequency is known and

| =C_F p the distance between successive nodes in the
B 51 standing wave pattern is measured, the ve- :

locity can at once be computed from eq. 21. i

Fia. 26.12 For example, this can be done very nicely by

Melde’s experiment (Fig. 26.12), in which a
string of length ! has one end fastened to a prong of an electrically
driven tuning fork while the other end passes over a frictionless pulley

N and terminates in a weight W. The frequency of the fork remaining
| constant, one gets different standing wave patterns, i.e., different

‘ w
|
|
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numbers of nodes, by altering the weight W (so changing the velocity
in accordance with eq. 16). The offect is very striking.

Let us consider a horizontal string of length [ fastened rigidly at both
ends. When struck or plucked it becomes the seat of transverse sta-
tionary waves. Since the ends must be nodes the simplest possible
type of standing-wave pattern is that shown in (a) of Fig. 26.13, where
there is a loop in the center of the string and the motion fluctuates be-

¢ tween the two extreme positions ACB and ADB,
4{'_?)3@ It is clear that we have here \/2 = lor
el _-E . Ay =2 (29)
4 5 F B(b) curresponding to frequency
OS>
i 74
Fia. 26.13 v=o (30)

This i8 called the fundaimental mode of oscillation of the stretched string,
and (29) and (30) give the fundamental wave length and frequency
respectively. The next possible mode is shown in {b) of Fig. 26.13 with

A=l = %- (31)

This is the first harmonic of the stretched string. The second harmonic
corresponds to the situation depicted in (c) with

= 2—31: v= 3, (32)

The set of frequencies vy = V/2I, v, = 2V/2l, v; = 3V/2... ) V=
nV/2l, ..., are the characteristic frequencies of the vibrating string,
Note that they increase proportionately to the natural numbers: the
harmonics are respectively 2, 3, 4, ...n ... times the fundamental
frequency.

We shall meet precisely the same type of stationary-wave phenomena
in connection with sound and light waves, They are clearly independent
of whether the waves are transverse or longitudinal,

8. Interference of Waves. The production of standing or stationary
waves described in the pre- jous section is but one illustration of the com-
bination of progressive w..ves. There is no reason why we cannot en-
visage the passage of many harmonic progressive waves of different
frequency in variovs directions in a medium. To find the resultant
disturbance at any point we merely add algebraically the individual
disturbances. This resultant will vary periodically with the time (unless
indeed it happens to occur at a node). The combination of WaVe, w
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form a resultant wave is often termed superposition, but we can also
describe it by the term interference, the simplest : ype of which is called
constructive and is illustrated by the superposition of harmonic waves
of the same frequency, traveling with the same velocity in the same
direction and having the same phase. In Fig. 26.14 we indicate two
such waves 1 and 2 traveling in the same direction and having slightly
different amplitudes. Their resultant is wave 3 of the sa.ne frequency

Fic. 26.14 Fic. 28.15

and velocity but of larger amplitude than either of the component waves.
A quite differert situation is shown in Fig. 26.15, where the two waves
1 and 2 (here of the same amplitude) are precisely ouf of phase with each
other. This means that crest of one falls on trough of the other, and
vice versa, so that the resultant displacement is zero at all times every-
where. This is called destructive interference.

A very interesting illustration of interference is to be found in the
wave pattern produced when a plane harmonic water wave encounters
a rigid obstacle having two orifices through which the disturbance can
go. The situation corresponds to Fig. 26.16, where we represent the
obstacle by 00’. The approaching plane wave traveling upward toward
the obstacle can be represented by the traces of its successive wave
fronts on the plane of the diagram.
Dotted lines such as TT' will represent
troughs (i.e., at every point of TT' the
displacement is & minimum at the same
time) while full lines like CC’ indicate
crests. The distance between the lines c—4 B o
CC’' and TT' is, of course, /2. The i
orifices are assumed to have dimensions @ "7~ -
small compared with A. Then the dis- Fia. 26.16
turbance will spread out from each opening in the form of semicircular
wave fronts as indicated in the picture, the full semicircles denoting
crests and the dotted ones troughs. The wave fronts from the two
orifices will overlap and intesfere. Where crest falls on crest or trough
on trough, the interference is constructive and the displacement will be
large in magnitude. Where crest of one wave system falls on trough
of the other, the interference is destructive and the displacement is zero,
Hence there results the interesting crisscross pattern which can be

207




208

readily observed on a water surface where circular or semicircular wave
fronts overlap. In the figure the line LL’ is a line connecting points of
constructive interference, while MM’ is a line connecting points of
destructive interference. We shall find this diagram very useful when

we discuss the interference of light waves.
So far our description of interference has assumed that the frequency
of the interfering waves is the same.

s! —~ AN > This need not be true. Consider

D N NN/ Fig. 26.17 which shows two har-
7 monic progressive waves 1 and 2,

Fre. 26.17 where 2 has frequency double that of 1.
Suppose at the point A the waves
are in phase. Then in the neighborhood of B and D they are out of
phase. Hence the resultant wave produced by the superposition of 1
and 2 is 3, which corresponds to large displacement in the neighborhood
of A, C, and E but very small displacement around B and D, i.e., large
amplitude succeeds small amplitude in periodic succession. We note
that the frequency of t}-2 resultant disturbance is just the difference
between the frequencies of the components. It is called the beat fre-
quency of the components.
9. Diffraction. Among the very pretty experiments which can be
performed with water waves in a ripple tank is that in which a plane
wave meets an obstacle 00 parallel to the wave )

front (Fig. 26.18). One might suppose that the | ﬁ?’ ]

obstacle would allow the plane wave to pass above | | i : | [—
the line OA but completely cut it off in the ||| I ol !

region below OA. That is, we might expect the ! z}' J / 4

obstacle to produce a water wave shadow so that N
no disturbance gets down into the region 400’ B
and all of it moves forward as a plane wave
beyond the obstacle. As a matter of fact this
does not happen. Experiment. indicates that in addition to the plane
waves in the region abuve OA there are some circular wave fronts
in the region below 04, i.e., some wave propagation in the direction OB:
the advancing wave acts as if it were able to bend around the obstacle.
This ability of a wave to bend around an obstacle is known asdiffraction
and is an extremely significant property of waves of all kinds. It is not,
of course, restricted to harmonic waves. Experiment indicates, and we
shall later show indeed for light waves, that long-wave-length harmonic
waves can be more readily diffracted than short waves.

10. Polarization. An instructive experiment which can be per-
formed with transverse waves in a string or rubber hose consists in

F16. 26.18




£+ ;—; dz. Hence the change in length of the original piece dz is df =

at . . . dE _%
Py dz, or the change in length par unit length or strain is =5

given in (6). If the rod may be treated as an elastic solid, or better if
the stress and strain are within the elastic limit, we may use Hooke's
law (Sec. 3, Chapter XI) and write

) ‘ F _ :
'3;'5' = }’, (7)
iz

¥

where Y is Young's modulus. Now let us consider the actual motion
of any small element of length of the rod, say Az, as indicated in the
, figure. It is under tension, and the tension force at the left-hand
end is simply SF directed toward the left while that at the right-hand

F
enais SF + 8 -:;- Az directed toward the right, since we have to sup-

pose that the tension changes with z and 8F/az represents its rate of ;
change. Hence the net or resultant force on tne element of length Az
appears as the difference of the two or

oF
S~ Az, @)

We must now apply the fundamental equation of dynamics: force = .
mass times acceleration. The mass of the element is pSAz, where p
is the average density. The acceleration is 8%/8(2. Hence the funda~
mentel equation of motion takes the form

aF %t
SAz Frie pSAz -—at”
or simplified
oaF %
= P @
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making the string pass through a narrow slot cut in a piece of cardboard
(cf. Fig. 26.19). If the lengthwise direction of the slot is parallel to
the direction of displacement in the string, the wave motion readily
pesses through the slot (as, for example, through S,8. in the figure).
On the other hand, if the slot is perpendicular to the direction of dis-
placement (838 in the figure), the wave motion fails to get through
the slot. In general, if the slot is placed at an angle with the direction
of displacement, only the component of the displacement parallel to the
slot gets through. If then a wave with arbitrary or changing displace-
ment direction encounters such a slot, when it emerges the displacement
will be parallel to the slct. We shall say that the wave becomes polar-
1zed, and indeed in this case plane polarized, since the displacement then
lies continually in a plane containing the direction of propagatiun.
Evidently a slot like the one described can act as a plane polarizer for :
transverse waves. At the same i
time if a plane-polarized transverse
wave encounters such a slot, the slot
can act as an analyzer for the wavs,
since it will allow the wave through
with its original amplitude only for
a certain orientation.

We have emphasized throughout the discussion in the preceding
paragraph that the wave is transverse. It should be clear to the reader -
that the effects described will be absent for longitudinal waves. This ,
provides an interesting test of the nature of particular types of wave :

motion: if one can find no evidence for the polarization of a wave, it is
olear that it must ha langitiudinal On the ather hand nhenamena

F1q. 26.19




V=N L

For an illustration we recall that for stecl p = 7.8 grams/em?, approx-
imately, and ¥ = 2.0 X 10'® dynes/em?. Eq. 11 gives V = 5,000
meters/see, apj;roximately.

The same sort of analysis can be carried out for elastic waves of any
sort in aLy material medium. Interestingly enough, it is found that
V is always expressible as the square root of the ratio of two factors, the
numerator representing an elasticity factor, e.g., an elastic constant or
combination of such, and the denominator an inertia factor, e.g., the
density as above in (11). We can therefore say qualitatively that the
velocity of elastic waves in very dense media which are not very elastic
is smaller than that in more elastic, lighter media. We shall now give
a few illustrations, quoting results without working them out in all cases.

For a torsional wave (cf. Sec. 1) in a bar or rod, V =V u/p, where
2 u = shear raodulus or rigidity (cf. Sec. 3, Chapter XI).
For a compressional or “squeeze ” wave in a fluid medium V =

V'Pe/pe, where p, is the excess pressure brought about in the fluid by the
compressional disturbance and p, is the associated excess density. Thus
we have to visualize the passage of such a wave through a fluid as the
motion of a *squeeze,” i.e., a state of compression, through the fluid.
As it progresses, the pressure at any particular point rises momentarily
above its equilibrium value and then falls below it. As the pressure
changes 50 does the density and indeed in the same direction. The rela-
tion between the changes in pressure and density can be obtained from
a knowledge of the elastic properties of the fluid. Let the fluid be a
liquid with bulk modulus k. Thena change of pressure Ap is associated
with a change of volume A» through the expression (cf. Sec. 3, Chap-
ter XI).
Ap

m = —k. (12)

Note that we are here using v for volume to avoid confusion with V,
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Many aspects of the music produced by instruments,
such as tone, consonance, dissonance, and scales, are

closely related to physical laws.

<l

16 Musical Instruments and Scales X

Harvay E. White

1940 ;

MUusICAL instruments are often classified under one of the follow-
ing heads: strings, winds, rods, plates, and bells. One who is more or
less familiar with instruments will realize that most of these terms ;
apply to the material part of each instruraent set into vibration fvvhe'n i
the instrument is played. It is the purpuse of the ﬁrst half of this :
chapter to consider these vibrating sources and the various factors gov-
erning the frequencies of their musical notes, ar'nd in the second part
to take up in some detail the science of the musxcal'scale'. .

16.1. Stringed Instruments. Under the classification of strings
we find such instruments as the violin, cello, viola, double bass,' harp,
guitar, and piano. There are two principal reasons why these instru-
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8p/p
But Ap = p, and Ap = p. in the meaning we have just given to these
quantities, Hence

V= \/Er (13)
p

Thus for water p = 1 gram/em?, k = 2.14 X 10'® dynes/cm?2, whence
V = 1,460 meters/sec. .

For a compressional wave in a solid not in the form of a long thin rod,
it can be shown that the velocity has the form

V p

Here both shear and bulk moduli enter into the velocity of a compres-
sional wave. .
A compressional wave in a gas has already been treated in Sce. 4,

Chapter XVI, and we shall merely recall for reference that V =V p,/p,
reduces in this case to

V=42, (15)
p
where p and p are the equilibrium or average pressure and density,
respectively, and ¥ is the ratio of the specific heat at constant pressure
to that at constant volume (y = 1.41 for air). Note here how the
quantity yp plays the réle of clasticity factor for a gas.

Accurate measurements with vibrating strings, as well as theory,
show that the frequency # is given by the following formula:

7= ‘ZII F/m, ' (6a)

where L is the distance in centimeters between two consecutive nodes,
F is the tension on the string in dynes, and m the mass in grams of one
centimeter length of string. The equation gives the exact pitch of a
string or the change in pitch due to a change in length, mass, or tension,
If the length L is doubled the frequency is halved, i.e., the pitch is
lowered one octave. If m is increased » decreases, and if the tension F
is increased » increases. The formula shows that to double the fre-
quency by tightening a string the tension must be increased fourfold,

n %m ~undamental
i P 1ot owrtone
3n %m% 2nd overtone

n > ird ovrtone
6n 5N nvovtona
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as - HE deuuelivit o ©4. 10 18 worth going through,
Phoug.h it follows the same general scheme as that used

4 in fienving eq. 11. In Fig. 26.5 a small portion of the
s!;nng ds, with mass p ds, is shown in its displaced condi-
tion (displacement £) with the tension 7 acting along it
at both ends. To write the equation of motion we must equate the net
vf:rtical force acting on the element to the mass times the acceleration.
Bince we are assuming small transverse displacements from equilibrium
we can replace ds by its projection dz on the ‘quilibrium position of the
string without serious error. The vertical ~omponent of the tension

Fio. 26.6

. . 9
at the end A is then approximately = a—: s where the derivative is taken

at this point. (We assume d/0z = 8t/3s, approximately.) At B we
2,

ot 3% 9
have U + fagd:c. The net upward ‘orez s ra—zf dz. The equa-
tion of motion then becomes
% 9%
TR = P
or

- JETE_F
4 FYd az’-‘\/,—,'

Waves on the surface of water or other liquids are rather complicated
affairs. If they are merely ripples, they are mainly due to surface
tension. On the other hand, if they are primarily due to gravity and
the water depth is not too great the velocity comes out to be

V =+/gh, (17)

where g is the acceleration of gravi‘ty and & is the depth of the water.
For other types of water waves the reader must consult a treatise on ;
theoretical physics, . . . %
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frequency and several overtones simultaneously. This is accomplished :
by plucking or bowing the string vigorously. To illustrate this, a dia- :
gram of a string vibrating with its fundamental and first overtone is
shown in Fig. 16C. As the string vibrates with a node at the center s
and a frequency 2», it also .aoves up and down as a whole with the
fundamental frequency »# and a node at each end.
It should be pointed out that a string set into vibration with nodes
and loops is but an example of standing waves, see Figs. 14K and 14L. .
Vibrations produced at one

end of a string send a con- :
tinuous train of waves along % g

the string to be reflected back
g Fic. 16C—String vibrating with its tundamental

*

from the other end. This is and first overtone simultaneously. z
true not only for transverse b
waves but for longitudinal or torsional waves as well. Standing waves s

of the latter two types can be demonstrated by stroking or twisting one
end of the string of a sonometer or violin with a rosined cloth.
16.3. Wind Instruments. Musical instruments often classified ,
as “wind instruments” are usually divided into two subclasses, “wood- -
.winds” and “brasses.” Under the-heading of wood-winds we find
such instruments as the flute, piccolo, clarinet, bass clarinet, saxophone,
bassoon, and contra bassoon, and under the brasses such instruments as
the French horn, cornet, trumpet, tenor trombone, bass trombone, and
tuba (or bombardon).

Tn nrackicallu all wind inctrmimente the canrre nf conned fc a vikeatioe

P s W e
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proper length, standing waves will be set up and the air column will
resonate to the frequency of the tuning fork. In this experiment the
proper length of the tube for the closed pipes is obtained by slowly
pouring water into the cylinder and listening for the loudest response.
Experimentally, this occurs at several points as indicated by the first
three diagrams; the first resonance occurs at a distance of one and one-
quarter wave-lengths, the second at three-quarters of a wave-length,
and the third at one-quarter of a wave-length. ‘The reason for these

(a) ()] () ) (e) 152]
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F16. 16D—The column of air in a pipe will resonate 10 sound of a given pitch if the length
of e pipe is properly adjusted.

odd fractions is that only a node can form at the closed end of a pipe
and a loop at an open end. ‘This is true of all wind instruments.
For open pipes a loop forms at both ends with one or more nodes

in between. The first five pipes in Fig. 16D are shown responding to a

tuning fork of the same frequency. The sixth pipe, diagram (£)..is
the same length as (d) but is responding to a fork of twice the fre-
quency of the others. This note is one octave higher in pitch. In
other words, a pipe of given length can be made to resonate to various
frequencies. Closed pipe (a), for example, will respond to other
forks whose waves are of the right length to form a node at the bottom,
a loop at the top and any number of nodes in between.

The existence of standing waves in a resonating air column may be
demonstrated by a long hollow tube filled with illuminating gas as
shown in Fig. 1GE. Entering through an adjustable plunger at the left
the gas escapes through tiny holes spaced at regular intervals in a row
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along the top. Sound waves from an organ pipe enter the gas column
by setting into vibration a thin rubber sheet stretched over the right-
hand end. When resonance is attained by sliding the plunger to the
correct position, the small gas flames will appear as shown. Where
the nodes occur in the vibrating gas column the air molecules are not
moving, see Fig. 14L (b); at these points the pressure is high and the
flames are tallest. Half way between are the loops; regions where the
molecules vibrate back and forth with large amplitudes, and the flames
are low. Bernoulli’s principle is chiefly responsible for the pressure

organ pipe —»

gas flames

0000 LRI 000000000
. '--.~':\Z{}H‘}?%Wr-‘p'- ¥

N LN L N
illuminati;y gas

airblast

Fic. 16E—Standing waves in a long tube containing illuminating gas.

differences, see Sec. 10.8, for whete the velocity of the molecules is
high the pressure is low, and where the velocity is low the pressure
is high.

The various notes produced by most wind instruments are brought
about by varying the length of the vibrating air column. This is illus-
trated by the organ pipes in Fig. 16F. The longer the air column the
lower the frequency or pitch of the note. In a regular concert organ :
the pipes vary in length from about six inches for the highest note to ;
almost sixteen feet for the lowest. For the middle octave of the musical
scale the open-ended pipes vary from two feet for middle C to one
foot for C! one octave higher. In the wood-winds like the flute the :
length of the column is varied by openings in the side of the instru-
ment and in many of the brasses like the trumpet, by means of valves.

A valve is a piston which on being pressed down throws in an addi-
tional length of tube. i
The frequency of a vibrating air column is given by the following :
formula, ) i
- Lkt

n=r VK : ;
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Wwhere L is the length of the air column, K is a number representing
the compressibility of the gas, p is the pressure of the gas, and 4 is its
density. ‘The function of each factor in this equation has been verified
by numerous experiments. ‘The effect of the length L s illustrated in
Fig. 16F. To lower the frequency to half-value the length must be
doubled. The effect of the density of a gas on the pitch of a note may
be demonstrated by a very interesting experiment with the human
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F16. 16F—Organ pipes arranged in a musical scale. The longer the pipe the lower is
its fundamental frequency and pitch. The vibrating air column of the flute is terminated
at various points by openings along the tube.

voice. Voice sounds originate in the vibrations of the vocal cords in
the latynx. The pitch of this source of vibration is controlled by mus-
cular tension on the cords, while the quality is determined by the size
and shape of the throat and mouth cavities. If a gas lighter than air
is breathed into the lungs and vocal cavities, the above equation shows
that the voice should have a higher pitch. The demonstration can be
best and most safely performed by breathing helium gas, whose effect
is to raise the voice about two and onc-half octaves. The experiment
must be performed to be fully